Skip to main content
Glama
by 8b-is
quantum_semantic.rs3.88 kB
//! Quantum Semantic formatter - "AST-aware compression!" - Omni //! Combines quantum compression with semantic code understanding use super::Formatter; use crate::dynamic_tokenizer::DynamicTokenizer; use crate::scanner::{FileNode, TreeStats}; use crate::tree_sitter_quantum::SemanticQuantumCompressor; use anyhow::Result; use std::io::Write; use std::path::Path; pub struct QuantumSemanticFormatter { #[allow(dead_code)] compressor: SemanticQuantumCompressor, #[allow(dead_code)] max_nodes_per_file: usize, } impl Default for QuantumSemanticFormatter { fn default() -> Self { Self::new() } } impl QuantumSemanticFormatter { pub fn new() -> Self { Self { compressor: SemanticQuantumCompressor::new(), max_nodes_per_file: 10, // Extract top 10 semantic nodes per file } } } impl Formatter for QuantumSemanticFormatter { fn format( &self, writer: &mut dyn Write, nodes: &[FileNode], stats: &TreeStats, root_path: &Path, ) -> Result<()> { // First pass: analyze the project to learn patterns let mut tokenizer = DynamicTokenizer::new(); tokenizer.analyze(nodes); // Header with dynamically generated token definitions writeln!(writer, "QUANTUM_SEMANTIC_V2:")?; write!(writer, "{}", tokenizer.get_token_header())?; // Add semantic tokens (these are still hardcoded as they're language-specific) writeln!(writer, " F0=fn")?; writeln!(writer, " F1=struct")?; writeln!(writer, " F2=trait")?; writeln!(writer, " F3=impl")?; writeln!(writer, " F4=class")?; writeln!(writer, " F5=def")?; writeln!(writer, " F6=main[1.0]")?; writeln!(writer, " F7=pub[0.9]")?; writeln!(writer, " F8=test[0.3]")?; writeln!(writer)?; // Stats writeln!(writer, "ROOT:{}", root_path.display())?; writeln!( writer, "STATS:F{:x}D{:x}S{:x}", stats.total_files, stats.total_dirs, stats.total_size )?; // Show tokenizer statistics let token_stats = tokenizer.get_stats(); writeln!( writer, "TOKENIZER:patterns={},tokens={},saved={}B", token_stats.patterns_found, token_stats.tokens_generated, token_stats.estimated_savings )?; writeln!(writer)?; writeln!(writer, "DATA:")?; // Process source code files with dynamic token compression for node in nodes { if !node.is_dir { // Get relative path let relative = node.path.strip_prefix(root_path).unwrap_or(&node.path); let path_str = relative.to_string_lossy().to_string(); // Compress the path using learned tokens let compressed_path = tokenizer.compress_path(&path_str); if let Some(ext) = node.path.extension().and_then(|e| e.to_str()) { // Determine language marker let lang_marker = match ext { "rs" => "@", "py" => "#", "js" => "$", "ts" => "%", _ => "", }; if !lang_marker.is_empty() { write!(writer, "{}", lang_marker)?; write!(writer, "{}", compressed_path)?; // Extract and write semantic nodes // For now, using placeholder semantic info // TODO: Integrate actual tree-sitter parsing writeln!(writer)?; } } } } writeln!(writer)?; writeln!(writer, "END_QS")?; Ok(()) } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/8b-is/smart-tree'

If you have feedback or need assistance with the MCP directory API, please join our Discord server