Skip to main content
Glama

Flutter Inspector MCP Server

enhancement_suggestions.md8.72 kB
# Dynamic Registry Enhancement Suggestions for AI Agents ## Current State Analysis The dynamic registry feature provides excellent foundations for AI agent workflows but could be enhanced in several key areas: ## 1. Enhanced Tool Discovery and Metadata ### Current Limitation `listClientToolsAndResources` provides basic tool definitions but lacks runtime context. ### Suggested Enhancement Add metadata about tool state, usage frequency, and categorization: ```dart // Enhanced tool registration with metadata final debugToolEntry = MCPCallEntry.tool( handler: debugHandler, definition: MCPToolDefinition( name: 'inspect_widget_state', description: 'Inspect current widget state', inputSchema: {...}, metadata: { 'category': 'debugging', 'priority': 'high', 'usageHint': 'Use when UI behaves unexpectedly', 'estimatedExecutionTime': 'fast', 'sideEffects': false, }, ), ); ``` ### Implementation Extend `MCPToolDefinition` and `DynamicRegistryTools._handleListClientToolsAndResources` to include: - Tool categories (debugging, state, ui, performance) - Execution time estimates - Side effect indicators - Usage recommendations - Last execution timestamp ## 2. Intelligent Tool Suggestion System ### Current Limitation AI agents must manually discover which tools are relevant for specific scenarios. ### Suggested Enhancement Add contextual tool recommendations based on app state: ```dart // New tool for intelligent suggestions static final suggestRelevantTools = Tool( name: 'suggestRelevantTools', description: 'Get tool suggestions based on current app state and context', inputSchema: ObjectSchema( properties: { 'context': Schema.string(description: 'Current debugging context (error, performance, ui)'), 'appState': Schema.object(description: 'Current app state snapshot'), }, ), ); ``` ### Implementation - Analyze current Flutter app state (errors, performance metrics, UI tree) - Return prioritized list of relevant tools - Include reasoning for each suggestion ## 3. Tool Chain Execution ### Current Limitation AI agents must execute tools sequentially, making debugging workflows verbose. ### Suggested Enhancement Enable chained tool execution with dependency management: ```dart // New tool for executing tool chains static final executeToolChain = Tool( name: 'executeToolChain', description: 'Execute a sequence of tools with result passing', inputSchema: ObjectSchema( required: ['toolChain'], properties: { 'toolChain': Schema.array( description: 'Array of tools to execute in sequence', items: Schema.object( properties: { 'toolName': Schema.string(description: 'Tool to execute'), 'arguments': Schema.object(description: 'Tool arguments'), 'resultMapping': Schema.object(description: 'How to pass results to next tool'), }, ), ), }, ), ); ``` ### Example Usage ```json { "name": "executeToolChain", "arguments": { "toolChain": [ { "toolName": "get_widget_info", "arguments": { "widgetId": "button1" } }, { "toolName": "modify_widget_state", "arguments": { "widgetId": "button1", "enabled": false } }, { "toolName": "take_screenshot", "arguments": {} }, { "toolName": "hot_reload_flutter", "arguments": {} } ] } } ``` ## 4. Real-time State Monitoring ### Current Limitation AI agents get point-in-time snapshots but lack continuous monitoring. ### Suggested Enhancement Add subscription-based monitoring for continuous state updates: ```dart // New resource for real-time monitoring static final subscribeToStateChanges = Tool( name: 'subscribeToStateChanges', description: 'Subscribe to real-time app state changes', inputSchema: ObjectSchema( properties: { 'monitors': Schema.array( description: 'Types of changes to monitor', items: Schema.string(enum: ['errors', 'ui_changes', 'navigation', 'performance']), ), 'duration': Schema.integer(description: 'Monitoring duration in seconds'), }, ), ); ``` ### Implementation - Use Flutter's dev tools protocol for real-time updates - Stream changes to AI agents via MCP notifications - Enable proactive debugging based on detected issues ## 5. Code Generation and Hot Injection ### Current Limitation AI agents can only work with pre-registered tools, limiting experimentation. ### Suggested Enhancement Enable dynamic Dart code generation and injection: ```dart // New tool for runtime code injection static final injectDartCode = Tool( name: 'injectDartCode', description: 'Inject and execute Dart code at runtime for experimentation', inputSchema: ObjectSchema( required: ['dartCode'], properties: { 'dartCode': Schema.string(description: 'Dart code to inject and execute'), 'context': Schema.string(description: 'Execution context (widget, service, global)'), 'temporary': Schema.bool(description: 'Whether changes are temporary or persistent'), }, ), ); ``` ### Safety Considerations - Sandbox execution environment - Code validation before injection - Automatic rollback on errors - Clear temporary vs persistent change distinction ## 6. Enhanced Error Context ### Current Limitation Error reporting lacks sufficient context for AI agents to provide meaningful assistance. ### Suggested Enhancement Enrich error reporting with actionable context: ```dart // Enhanced error resource extension type EnhancedErrorResource._(MCPCallEntry entry) implements MCPCallEntry { factory EnhancedErrorResource() { return EnhancedErrorResource._(MCPCallEntry.resource( handler: (request) => MCPCallResult( message: 'Enhanced error information with context', parameters: { 'errors': errors.map((e) => { 'message': e.message, 'stackTrace': e.stackTrace, 'widgetContext': e.widgetContext, 'suggestedFixes': e.suggestedFixes, 'relatedCode': e.relatedCodeSnippets, 'debuggingSteps': e.recommendedDebuggingSteps, }).toList(), }, ), definition: MCPResourceDefinition( name: 'enhanced_errors', description: 'Detailed error information with actionable context', ), )); } } ``` ## 7. Performance Monitoring Integration ### Current Limitation No performance monitoring tools for AI agents to detect and debug performance issues. ### Suggested Enhancement Add comprehensive performance monitoring: ```dart // Performance monitoring tools static final analyzePerformance = Tool( name: 'analyzePerformance', description: 'Analyze app performance and identify bottlenecks', inputSchema: ObjectSchema( properties: { 'duration': Schema.integer(description: 'Analysis duration in seconds'), 'metrics': Schema.array( description: 'Performance metrics to collect', items: Schema.string(enum: ['frameRate', 'memory', 'cpu', 'battery', 'networkUsage']), ), }, ), ); ``` ## 8. Tool Template System ### Current Limitation Creating new tools requires significant boilerplate code. ### Suggested Enhancement Provide tool templates for common debugging patterns: ```dart // Tool template system static final createToolFromTemplate = Tool( name: 'createToolFromTemplate', description: 'Create a new debugging tool from a template', inputSchema: ObjectSchema( required: ['templateType'], properties: { 'templateType': Schema.string( enum: ['state_inspector', 'ui_modifier', 'performance_probe', 'custom_assertion'], ), 'parameters': Schema.object(description: 'Template-specific parameters'), }, ), ); ``` ## Implementation Priority ### High Priority (Immediate Impact) 1. Enhanced tool discovery metadata 2. Tool chain execution 3. Enhanced error context ### Medium Priority (Workflow Improvement) 4. Intelligent tool suggestions 5. Performance monitoring integration 6. Tool template system ### Lower Priority (Advanced Features) 7. Real-time state monitoring 8. Code generation and hot injection ## Review Questions 1. **Scope**: Are these enhancements aligned with your vision for AI agent workflows? 2. **Implementation**: Which enhancements would provide the most immediate value for AI agents? 3. **Safety**: Are there additional safety considerations for features like code injection? 4. **Integration**: How should these enhancements integrate with existing Flutter development tools? 5. **Documentation**: What additional documentation or examples would help AI agents use these features effectively?

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Arenukvern/mcp_flutter'

If you have feedback or need assistance with the MCP directory API, please join our Discord server