Skip to main content
Glama

Contextual MCP Server

Official
by ContextualAI
server.py1.31 kB
from contextual import ContextualAI from mcp.server.fastmcp import FastMCP API_KEY = "" # Create an MCP server mcp = FastMCP("Contextual AI RAG Platform") # Add query tool to interact with Contextual agent @mcp.tool() def query(prompt: str) -> str: """An enterprise search tool that can answer questions about any sort of knowledge base""" client = ContextualAI( api_key=API_KEY, # This is the default and can be omitted ) instruction = "Rank documents based on their ability to answer the question/query" agents = {} for agent in client.agents.list(): agents.update({agent.id: f"{agent.name} - {agent.description}"}) documents = list(agents.values()) results = client.rerank.create( model="ctxl-rerank-en-v1-instruct", instruction=instruction, query=prompt, documents=documents, metadata=metadata, top_n=1 ) agent_index = results.results[0].index agent_id = list(agents.keys())[agent_index] query_result = client.agents.query.create( agent_id=agent_id, messages=[{ "content": prompt, "role": "user" }] ) return query_result.message.content if __name__ == "__main__": # Initialize and run the server mcp.run(transport='stdio')

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ContextualAI/contextual-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server