README.mdβ’9.78 kB
# MCP Business AI Transformation
Enterprise-grade MCP (Model Context Protocol) server with multi-agent system for business AI transformation.
## ποΈ Architecture Overview
```
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β Agent Layer βββββΊβ MCP Gateway βββββΊβ Business APIs β
β (Orchestrator) β β (Protocol Hub) β β (External) β
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β β β
βΌ βΌ βΌ
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β LLM Fabric β β State Manager β β Monitoring Hub β
β (Multi-Model) β β (Redis+Postgres) β β (Observability) β
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
```
## π Features
### Core MCP Server
- **FastAPI-based** high-performance server
- **MCP Protocol** compliant (2024-11-05 spec)
- **Multi-provider LLM support** (Evolution Foundation Models, OpenAI, HuggingFace)
- **Circuit breaker** pattern for external API resilience
- **Rate limiting** with Redis-based sliding window
- **JWT & API Key** authentication
- **Prometheus metrics** and OpenTelemetry tracing
### Multi-Agent System
- **Specialized Agents**: Data Analyst, API Executor, Business Validator, Report Generator
- **Agent Registry** for dynamic agent management
- **Message Bus** for inter-agent communication
- **Task Orchestration** with intelligent agent selection
- **LangChain/LlamaIndex** integration for advanced AI capabilities
### Enterprise Features
- **Real-time Dashboard** with React + TypeScript
- **Business Domain Support**: Finance, Healthcare, Retail, Manufacturing, Technology
- **Observability Stack**: Prometheus, Grafana, Jaeger
- **Docker Compose** for easy deployment
- **Production-ready** with security best practices
## π οΈ Technology Stack
### Frontend
- **Next.js 15** with App Router
- **TypeScript 5** for type safety
- **Tailwind CSS 4** with shadcn/ui components
- **Real-time updates** with WebSocket support
### Backend
- **Python 3.11** with FastAPI
- **PostgreSQL** for persistent storage
- **Redis** for caching and rate limiting
- **AsyncIO** for high concurrency
### AI/ML
- **Evolution Foundation Models** (Cloud.ru)
- **OpenAI API** compatibility
- **LangChain** for agent orchestration
- **LlamaIndex** for data indexing
### DevOps
- **Docker** containerization
- **Prometheus** monitoring
- **Grafana** dashboards
- **Jaeger** distributed tracing
## π¦ Quick Start
### Prerequisites
- Docker & Docker Compose
- Node.js 18+ (for local development)
- Python 3.11+ (for local development)
### Environment Configuration
Create a `.env` file:
```bash
# API Keys
EVOLUTION_API_KEY=your_evolution_api_key
OPENAI_API_KEY=your_openai_api_key
HUGGINGFACE_API_KEY=your_huggingface_api_key
# Security
SECRET_KEY=your-super-secret-key-change-in-production
# Database (optional, defaults work with Docker)
DATABASE_URL=postgresql+asyncpg://postgres:password@localhost:5432/mcp_db
REDIS_URL=redis://localhost:6379
```
### Start the System
```bash
# Start all services
docker-compose up -d
# View logs
docker-compose logs -f
# Stop services
docker-compose down
```
### Access Points
- **Frontend Dashboard**: http://localhost:3000
- **MCP Server API**: http://localhost:8000
- **API Documentation**: http://localhost:8000/docs
- **Grafana Dashboard**: http://localhost:3001 (admin/admin)
- **Prometheus**: http://localhost:9091
- **Jaeger Tracing**: http://localhost:16686
## π§ Development
### Local Development Setup
#### Backend (MCP Server)
```bash
cd mcp_server
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
```
#### Agent System
```bash
cd agent_system
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python main.py
```
#### Frontend
```bash
npm install
npm run dev
```
### Project Structure
```
βββ src/ # Next.js frontend
β βββ app/ # App Router pages
β βββ components/ # React components
β βββ lib/ # Utility functions
βββ mcp_server/ # FastAPI MCP server
β βββ app/ # Application code
β β βββ api/v1/ # API endpoints
β β βββ core/ # Core services
β β βββ middleware/ # Custom middleware
β βββ tests/ # Test suite
βββ agent_system/ # Multi-agent system
β βββ core/ # Agent framework
β βββ agents/ # Specialized agents
β βββ llm/ # LLM providers
βββ docker-compose.yml # Multi-service deployment
βββ docs/ # Documentation
```
## π API Usage
### MCP Protocol
The server implements the MCP protocol for tool and resource management:
```bash
# Initialize connection
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {
"protocolVersion": "2024-11-05",
"capabilities": {}
}
}'
# List available tools
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/list"
}'
# Execute a tool
curl -X POST http://localhost:8000/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "financial_analyzer",
"arguments": {
"data": {...}
}
}
}'
```
### REST API
```bash
# Create a business task
curl -X POST http://localhost:8000/api/v1/resources/tasks \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-d '{
"title": "Financial Analysis Q4",
"description": "Analyze quarterly financial data",
"domain": "finance",
"priority": "high"
}'
# Get system status
curl -X GET http://localhost:8000/api/v1/admin/system/status
# Health check
curl -X GET http://localhost:8000/api/v1/health
```
## π Monitoring & Observability
### Metrics
- **Request latency** and throughput
- **Agent performance** and task completion rates
- **LLM token usage** and costs
- **External API** success rates and circuit breaker status
### Tracing
- **Distributed tracing** with Jaeger
- **Request correlation** IDs
- **Agent communication** tracing
### Logging
- **Structured logging** with correlation IDs
- **Log levels**: DEBUG, INFO, WARNING, ERROR
- **JSON format** for easy parsing
## π Security
### Authentication
- **JWT tokens** for user authentication
- **API keys** for service-to-service communication
- **Rate limiting** per user/API key
### Authorization
- **Role-based access control** (RBAC)
- **Resource-level permissions**
- **CORS** configuration
### Data Protection
- **Input validation** and sanitization
- **SQL injection** prevention
- **XSS protection** headers
## π Deployment
### Production Deployment
```bash
# Set production environment variables
export NODE_ENV=production
export DEBUG=false
# Deploy with production configurations
docker-compose -f docker-compose.yml -f docker-compose.prod.yml up -d
```
### Cloud.ru Evolution AI Agents
The system is designed to deploy on Cloud.ru Evolution AI Agents platform:
1. **Container Registry**: Push Docker images to Cloud.ru registry
2. **AI Agent Configuration**: Configure agent endpoints and API keys
3. **Load Balancing**: Set up load balancer for high availability
4. **Monitoring**: Configure Cloud.ru monitoring integration
## π€ Contributing
1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π Support
- **Documentation**: Check the `/docs` directory
- **API Docs**: Visit http://localhost:8000/docs
- **Issues**: Create an issue on GitHub
- **Discussions**: Join our GitHub Discussions
## πΊοΈ Roadmap
### Phase 1: Core Infrastructure β
- [x] MCP Server implementation
- [x] Multi-agent system
- [x] LLM provider integration
- [x] Basic monitoring
### Phase 2: Advanced Features (In Progress)
- [ ] Advanced agent orchestration
- [ ] Custom tool development framework
- [ ] Advanced analytics and reporting
- [ ] Multi-tenancy support
### Phase 3: Enterprise Features (Planned)
- [ ] Advanced security features
- [ ] Compliance certifications
- [ ] Advanced monitoring and alerting
- [ ] Performance optimization
### Phase 4: AI/ML Enhancements (Future)
- [ ] Custom model training
- [ ] Advanced prompt engineering
- [ ] Multi-modal AI capabilities
- [ ] AutoML integration
---
Built with β€οΈ for enterprise AI transformation