Skip to main content
Glama

focus_mcp_sql

by FocusSearch

FOCUS DATA MCP Server [中文]

A Model Context Protocol (MCP) server enables artificial intelligence assistants to convert natural language into SQL statements.

There are already so many Text-to-SQL frameworks. Why do we still need another one?

In simple terms, focus_mcp_sql adopts a two-step SQL generation solution, which enables control over the hallucinations of LLM and truly builds the trust of non-technical users in the generated SQL results.

Below is the comparison table between focus_mcp_sql and others:

Comparison Analysis Table

Here’s a side-by-side comparison of focus_mcp_sql with other LLM-based frameworks:

Feature

Traditional LLM Frameworks

focus_mcp_sql

Generation Process

Black box, direct SQL generation

Transparent, two-step (keywords + SQL)

Hallucination Risk

High, depends on model quality

Low, controllable (keyword verification)

Speed

Slow, relies on large model inference

Fast, deterministic keyword-to-SQL

Cost

High, requires advanced models

Low, reduces reliance on large models

Non-Technical User Friendliness

Low, hard to verify results

High, easy keyword checking

Features

-Initialize the model -Convert natural language to SQL statements

Prerequisites

  • jdk 23 or higher. Download jdk

  • gradle 8.12 or higher. Download gradle

  • register Datafocus to obtain bearer token:

    1. Register an account in Datafocus

    2. Create an application

    3. Enter the application

    4. Admin -> Interface authentication -> Bearer Token -> New Bearer Token bearer token

Installation

  1. Clone this repository:

git clone https://github.com/FocusSearch/focus_mcp_sql.git cd focus_mcp_sql
  1. Build the server:

gradle clean gradle bootJar The jar path: build/libs/focus_mcp_sql.jar

MCP Configuration

Add the server to your MCP settings file:

{ "mcpServers": { "focus_mcp_data": { "command": "java", "args": [ "-jar", "path/to/focus_mcp_sql/focus_mcp_sql.jar" ], "autoApprove": [ "gptText2sqlStart", "gptText2sqlChat" ] } } }

Available Tools

1. gptText2sqlStart

initial model.

Parameters:

  • model (required): table model

  • bearer (required): bearer token

  • language (optional): language ['english','chinese']

Example:

{ "model": { "tables": [ { "columns": [ { "columnDisplayName": "name", "dataType": "string", "aggregation": "", "columnName": "name" }, { "columnDisplayName": "address", "dataType": "string", "aggregation": "", "columnName": "address" }, { "columnDisplayName": "age", "dataType": "int", "aggregation": "SUM", "columnName": "age" }, { "columnDisplayName": "date", "dataType": "timestamp", "aggregation": "", "columnName": "date" } ], "tableDisplayName": "test", "tableName": "test" } ], "relations": [ ], "type": "mysql", "version": "8.0" }, "bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU=" }

model 参数说明:

名称

位置

类型

必选

说明

model

body

object

none

» type

body

string

数据库类型

» version

body

string

数据库版本

» tables

body

[object]

表结构列表

»» tableDisplayName

body

string

表显示名

»» tableName

body

string

表原始名

»» columns

body

[object]

表列列表

»»» columnDisplayName

body

string

列显示名

»»» columnName

body

string

列原始名

»»» dataType

body

string

列数据类型

»»» aggregation

body

string

列聚合方式

» relations

body

[object]

表关联关系列表

»» conditions

body

[object]

关联条件

»»» dstColName

body

string

dimension 表关联列原始名

»»» srcColName

body

string

fact 表关联列原始名

»» dimensionTable

body

string

dimension 表原始名

»» factTable

body

string

fact 表原始名

»» joinType

body

string

关联类型

2. gptText2sqlChat

Convert natural language to SQL.

Parameters:

  • chatId (required): chat id

  • input (required): Natural language

  • bearer (required): bearer token

Example:

{ "chatId": "03975af5de4b4562938a985403f206d4", "input": "what is the max age", "bearer": "ZTllYzAzZjM2YzA3NDA0ZGE3ZjguNDJhNDjNGU4NzkyYjY1OTY0YzUxYWU5NmU=" }

Response Format

All tools return responses in the following format:

{ "errCode": 0, "exception": "", "msgParams": null, "promptMsg": null, "success": true, "data": { } }

Visual Studio Code Cline Sample

  1. vsCode install cline plugin

  2. mcp server config config mcp server

  3. use

    1. initial model initial model1 initial model2

    2. transfer: what is the max age chat

Contact:

https://discord.gg/mFa3yeq9 Datafocus

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A NL2SQL plugin based on FocusSearch keyword parsing, offering greater accuracy, higher speed, and more reliability!

  1. There are already so many Text-to-SQL frameworks. Why do we still need another one?
    1. Comparison Analysis Table
    2. Features
    3. Prerequisites
    4. Installation
    5. MCP Configuration
    6. Available Tools
    7. Response Format
    8. Visual Studio Code Cline Sample
    9. Contact:

Related MCP Servers

  • A
    security
    A
    license
    A
    quality
    Enables querying documents through a Langflow backend using natural language questions, providing an interface to interact with Langflow document Q\&A flows.
    Last updated -
    1
    14
    MIT License
    • Apple
  • A
    security
    F
    license
    A
    quality
    A lightweight toolkit that enables Claude to search Twitter with natural language queries and display results based on user intent, supporting features like tweet filtering, pagination, and flexible output formatting.
    Last updated -
    1
    10
  • -
    security
    F
    license
    -
    quality
    Enables dynamic database querying through natural language questions using LLM-powered parameter extraction and template-based SQL generation. Supports flexible configuration for various domains and databases with automated response formatting.
    Last updated -
  • -
    security
    F
    license
    -
    quality
    Enables natural language database operations and semantic document search through SQLite and vector database integration. Converts plain English instructions into SQL queries and provides RAG capabilities for uploaded documents.
    Last updated -
    • Apple

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/FocusSearch/focus_mcp_sql'

If you have feedback or need assistance with the MCP directory API, please join our Discord server