Skip to main content
Glama
start_a2a_servers.sh1.88 kB
#!/bin/bash # A2A 서버들만 실행하는 스크립트 echo "=== A2A 서버 시작 ===" echo "" # 환경 변수 로드 if [ -f .env ]; then export $(cat .env | grep -v '^#' | xargs) fi # 포트 설정 export PLANNING_AGENT_PORT=8003 export RESEARCH_AGENT_PORT=8001 export REPORT_WRITING_AGENT_PORT=8004 export MCP_SERVER_PORT=8090 # 프로세스 종료 함수 cleanup() { echo "\n=== 서버 종료 중... ===" kill $(jobs -p) 2>/dev/null exit 0 } # 시그널 핸들러 등록 trap cleanup SIGINT SIGTERM # 1. MCP 서버 시작 echo "1. MCP 서버 시작 (포트 $MCP_SERVER_PORT)..." python all-search-mcp/run_server.py --transport http --port $MCP_SERVER_PORT & sleep 3 # 2. Planning Agent A2A 서버 echo "\n2. Planning Agent A2A 서버 시작 (포트 $PLANNING_AGENT_PORT)..." python agents/a2a_servers/planning_a2a_server.py & sleep 2 # 3. Research Agent A2A 서버 echo "\n3. Research Agent A2A 서버 시작 (포트 $RESEARCH_AGENT_PORT)..." python agents/a2a_servers/research_a2a_server.py & sleep 2 # 4. Report Writing Agent A2A 서버 echo "\n4. Report Writing Agent A2A 서버 시작 (포트 $REPORT_WRITING_AGENT_PORT)..." python agents/a2a_servers/report_writing_a2a_server.py & sleep 2 echo "\n=== 모든 A2A 서버가 시작되었습니다 ===" echo "" echo "접속 URL:" echo "- Planning Agent: http://localhost:$PLANNING_AGENT_PORT" echo "- Research Agent: http://localhost:$RESEARCH_AGENT_PORT" echo "- Report Writing Agent: http://localhost:$REPORT_WRITING_AGENT_PORT" echo "- MCP Server: http://localhost:$MCP_SERVER_PORT/mcp" echo "" echo "AgentCard 확인:" echo "- http://localhost:$PLANNING_AGENT_PORT/v1/card" echo "- http://localhost:$RESEARCH_AGENT_PORT/v1/card" echo "- http://localhost:$REPORT_WRITING_AGENT_PORT/v1/card" echo "" echo "종료하려면 Ctrl+C를 누르세요." # 백그라운드 프로세스 대기 wait

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HyunjunJeon/vibecoding-lg-mcp-a2a'

If you have feedback or need assistance with the MCP directory API, please join our Discord server