Skip to main content
Glama

MockLoop MCP Server

Official
by MockLoop

NOTE: We have

MockLoop

MockLoop MCP - AI-Native Testing Platform

PyPI version Python versions Downloads License Tests Documentation AI-Native MCP Compatible

The world's first AI-native API testing platform powered by the Model Context Protocol (MCP). MockLoop MCP revolutionizes API testing with comprehensive AI-driven scenario generation, automated test execution, and intelligent analysis capabilities.

🚀 Revolutionary Capabilities: 5 AI Prompts • 15 Scenario Resources • 16 Testing Tools • 10 Context Tools • 4 Core Tools • Complete MCP Integration

📚 Documentation: https://docs.mockloop.com
📦 PyPI Package: https://pypi.org/project/mockloop-mcp/
🐙 GitHub Repository: https://github.com/mockloop/mockloop-mcp

🌟 What Makes MockLoop MCP Revolutionary?

MockLoop MCP represents a paradigm shift in API testing, introducing the world's first AI-native testing architecture that combines:

  • 🤖 AI-Driven Test Generation: 5 specialized MCP prompts for intelligent scenario creation

  • 📦 Community Scenario Packs: 15 curated testing resources with community architecture

  • ⚡ Automated Test Execution: 30 comprehensive MCP tools for complete testing workflows (16 testing + 10 context + 4 core)

  • 🔄 Stateful Testing: Advanced context management with GlobalContext and AgentContext

  • 📊 Enterprise Compliance: Complete audit logging and regulatory compliance tracking

  • 🏗️ Dual-Port Architecture: Eliminates /admin path conflicts with separate mocked API and admin ports

🎯 Core AI-Native Architecture

MCP Audit Logging

Enterprise-grade compliance and regulatory tracking

  • Complete request/response audit trails

  • Regulatory compliance monitoring

  • Performance metrics and analytics

  • Security event logging

MCP Prompts (5 AI-Driven Capabilities)

Intelligent scenario generation powered by AI

MCP Resources (15 Scenario Packs)

Community-driven testing scenarios with advanced architecture

  • Load Testing Scenarios: High-volume traffic simulation

  • Error Simulation Packs: Comprehensive error condition testing

  • Security Testing Suites: Vulnerability assessment scenarios

  • Performance Benchmarks: Standardized performance testing

  • Integration Test Packs: Cross-service testing scenarios

  • Community Architecture: Collaborative scenario sharing and validation

MCP Tools (16 Automated Testing Tools)

Complete automated test execution capabilities

Scenario Management (4 tools)

Test Execution (4 tools)

Analysis & Reporting (4 tools)

Workflow Management (4 tools)

MCP Context Management (10 Stateful Workflow Tools)

Advanced state management for complex testing workflows

Context Creation & Management

Data Management

Snapshot & Recovery

Global Context

🚀 Quick Start

Get started with the world's most advanced AI-native testing platform:

# 1. Install MockLoop MCP pip install mockloop-mcp # 2. Verify installation mockloop-mcp --version # 3. Configure with your MCP client (Cline, Claude Desktop, etc.) # See configuration examples below

📋 Prerequisites

  • Python 3.10+

  • Pip package manager

  • Docker and Docker Compose (for containerized mock servers)

  • An MCP-compatible client (Cline, Claude Desktop, etc.)

🔧 Installation

Option 1: Install from PyPI (Recommended)

# Install the latest stable version pip install mockloop-mcp # Or install with optional dependencies pip install mockloop-mcp[dev] # Development tools pip install mockloop-mcp[docs] # Documentation tools pip install mockloop-mcp[all] # All optional dependencies # Verify installation mockloop-mcp --version

Option 2: Development Installation

# Clone the repository git clone https://github.com/mockloop/mockloop-mcp.git cd mockloop-mcp # Create and activate virtual environment python3 -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate # Install in development mode pip install -e ".[dev]"

⚙️ Configuration

MCP Client Configuration

Cline (VS Code Extension)

Add to your Cline MCP settings file:

{ "mcpServers": { "MockLoopLocal": { "autoApprove": [], "disabled": false, "timeout": 60, "command": "mockloop-mcp", "args": [], "transportType": "stdio" } } }

Claude Desktop

Add to your Claude Desktop configuration:

{ "mcpServers": { "mockloop": { "command": "mockloop-mcp", "args": [] } } }

Virtual Environment Installations

For virtual environment installations, use the full Python path:

{ "mcpServers": { "MockLoopLocal": { "command": "/path/to/your/venv/bin/python", "args": ["-m", "mockloop_mcp"], "transportType": "stdio" } } }

🛠️ Available MCP Tools

Core Mock Generation

generate_mock_api

Generate sophisticated FastAPI mock servers with dual-port architecture.

Parameters:

  • spec_url_or_path (string, required): API specification URL or local file path

  • output_dir_name (string, optional): Output directory name

  • auth_enabled (boolean, optional): Enable authentication middleware (default: true)

  • webhooks_enabled (boolean, optional): Enable webhook support (default: true)

  • admin_ui_enabled (boolean, optional): Enable admin UI (default: true)

  • storage_enabled (boolean, optional): Enable storage functionality (default: true)

Revolutionary Dual-Port Architecture:

  • Mocked API Port: Serves your API endpoints (default: 8000)

  • Admin UI Port: Separate admin interface (default: 8001)

  • Conflict Resolution: Eliminates /admin path conflicts in OpenAPI specs

  • Enhanced Security: Port-based access control and isolation

Advanced Analytics

query_mock_logs

Query and analyze request logs with AI-powered insights.

Parameters:

  • server_url (string, required): Mock server URL

  • limit (integer, optional): Maximum logs to return (default: 100)

  • offset (integer, optional): Pagination offset (default: 0)

  • method (string, optional): Filter by HTTP method

  • path_pattern (string, optional): Regex pattern for path filtering

  • time_from (string, optional): Start time filter (ISO format)

  • time_to (string, optional): End time filter (ISO format)

  • include_admin (boolean, optional): Include admin requests (default: false)

  • analyze (boolean, optional): Perform AI analysis (default: true)

AI-Powered Analysis:

  • Performance metrics (P95/P99 response times)

  • Error rate analysis and categorization

  • Traffic pattern detection

  • Automated debugging recommendations

  • Session correlation and tracking

discover_mock_servers

Intelligent server discovery with dual-port architecture support.

Parameters:

  • ports (array, optional): Ports to scan (default: common ports)

  • check_health (boolean, optional): Perform health checks (default: true)

  • include_generated (boolean, optional): Include generated mocks (default: true)

Advanced Discovery:

  • Automatic architecture detection (single-port vs dual-port)

  • Health status monitoring

  • Server correlation and matching

  • Port usage analysis

manage_mock_data

Dynamic response management without server restart.

Parameters:

  • server_url (string, required): Mock server URL

  • operation (string, required): Operation type ("update_response", "create_scenario", "switch_scenario", "list_scenarios")

  • endpoint_path (string, optional): API endpoint path

  • response_data (object, optional): New response data

  • scenario_name (string, optional): Scenario name

  • scenario_config (object, optional): Scenario configuration

Dynamic Capabilities:

  • Real-time response updates

  • Scenario-based testing

  • Runtime configuration management

  • Zero-downtime modifications

🌐 MCP Proxy Functionality

MockLoop MCP includes revolutionary proxy capabilities that enable seamless switching between mock and live API environments. This powerful feature transforms your testing workflow by providing:

Core Proxy Capabilities

  • 🔄 Seamless Mode Switching: Transition between mock, proxy, and hybrid modes without code changes

  • 🎯 Intelligent Routing: Smart request routing based on configurable rules and conditions

  • 🔐 Universal Authentication: Support for API Key, Bearer Token, Basic Auth, and OAuth2

  • 📊 Response Comparison: Automated comparison between mock and live API responses

  • ⚡ Zero-Downtime Switching: Change modes dynamically without service interruption

Operational Modes

Mock Mode (MOCK)

  • All requests handled by generated mock responses

  • Predictable, consistent testing environment

  • Ideal for early development and isolated testing

  • No external dependencies or network calls

Proxy Mode (PROXY)

  • All requests forwarded to live API endpoints

  • Real-time data and authentic responses

  • Full integration testing capabilities

  • Network-dependent operation with live credentials

Hybrid Mode (HYBRID)

  • Intelligent routing between mock and proxy based on rules

  • Conditional switching based on request patterns, headers, or parameters

  • Gradual migration from mock to live environments

  • A/B testing and selective endpoint proxying

Quick Start Example

from mockloop_mcp.mcp_tools import create_mcp_plugin # Create a proxy-enabled plugin plugin_result = await create_mcp_plugin( spec_url_or_path="https://api.example.com/openapi.json", mode="hybrid", # Start with hybrid mode plugin_name="example_api", target_url="https://api.example.com", auth_config={ "auth_type": "bearer_token", "credentials": {"token": "your-token"} }, routing_rules=[ { "pattern": "/api/critical/*", "mode": "proxy", # Critical endpoints use live API "priority": 10 }, { "pattern": "/api/dev/*", "mode": "mock", # Development endpoints use mocks "priority": 5 } ] )

Advanced Features

  • 🔍 Response Validation: Compare mock vs live responses for consistency

  • 📈 Performance Monitoring: Track response times and throughput across modes

  • 🛡️ Error Handling: Graceful fallback mechanisms and retry policies

  • 🎛️ Dynamic Configuration: Runtime mode switching and rule updates

  • 📋 Audit Logging: Complete request/response tracking across all modes

Authentication Support

The proxy system supports comprehensive authentication schemes:

  • API Key: Header, query parameter, or cookie-based authentication

  • Bearer Token: OAuth2 and JWT token support

  • Basic Auth: Username/password combinations

  • OAuth2: Full OAuth2 flow with token refresh

  • Custom: Extensible authentication handlers for proprietary schemes

Use Cases

  • Development Workflow: Start with mocks, gradually introduce live APIs

  • Integration Testing: Validate against real services while maintaining test isolation

  • Performance Testing: Compare mock vs live API performance characteristics

  • Staging Validation: Ensure mock responses match production API behavior

  • Hybrid Deployments: Route critical operations to live APIs, others to mocks

📚 Complete Guide: For detailed configuration, examples, and best practices, see the MCP Proxy Guide.

🤖 AI Framework Integration

MockLoop MCP provides native integration with popular AI frameworks:

LangGraph Integration

from langgraph.graph import StateGraph, END from mockloop_mcp import MockLoopClient # Initialize MockLoop client mockloop = MockLoopClient() def setup_ai_testing(state): """AI-driven test setup""" # Generate mock API with AI analysis result = mockloop.generate_mock_api( spec_url_or_path="https://api.example.com/openapi.json", output_dir_name="ai_test_environment" ) # Use AI prompts for scenario generation scenarios = mockloop.analyze_openapi_for_testing( api_spec=state["api_spec"], analysis_depth="comprehensive", include_security_tests=True ) state["mock_server_url"] = "http://localhost:8000" state["test_scenarios"] = scenarios return state def execute_ai_tests(state): """Execute AI-generated test scenarios""" # Deploy AI-generated scenarios for scenario in state["test_scenarios"]: mockloop.deploy_scenario( server_url=state["mock_server_url"], scenario_config=scenario ) # Execute load tests with AI optimization results = mockloop.run_load_test( server_url=state["mock_server_url"], scenario_name=scenario["name"], duration=300, concurrent_users=100 ) # AI-powered result analysis analysis = mockloop.analyze_test_results( test_results=results, include_recommendations=True ) state["test_results"].append(analysis) return state # Build AI-native testing workflow workflow = StateGraph(dict) workflow.add_node("setup_ai_testing", setup_ai_testing) workflow.add_node("execute_ai_tests", execute_ai_tests) workflow.set_entry_point("setup_ai_testing") workflow.add_edge("setup_ai_testing", "execute_ai_tests") workflow.add_edge("execute_ai_tests", END) app = workflow.compile()

CrewAI Multi-Agent Testing

from crewai import Agent, Task, Crew from mockloop_mcp import MockLoopClient # Initialize MockLoop client mockloop = MockLoopClient() # AI Testing Specialist Agent api_testing_agent = Agent( role='AI API Testing Specialist', goal='Generate and execute comprehensive AI-driven API tests', backstory='Expert in AI-native testing with MockLoop MCP integration', tools=[ mockloop.generate_mock_api, mockloop.analyze_openapi_for_testing, mockloop.generate_scenario_config ] ) # Performance Analysis Agent performance_agent = Agent( role='AI Performance Analyst', goal='Analyze API performance with AI-powered insights', backstory='Specialist in AI-driven performance analysis and optimization', tools=[ mockloop.run_load_test, mockloop.get_performance_metrics, mockloop.analyze_test_results ] ) # Security Testing Agent security_agent = Agent( role='AI Security Testing Expert', goal='Conduct AI-driven security testing and vulnerability assessment', backstory='Expert in AI-powered security testing methodologies', tools=[ mockloop.generate_security_test_scenarios, mockloop.run_security_test, mockloop.compare_test_runs ] ) # Define AI-driven tasks ai_setup_task = Task( description='Generate AI-native mock API with comprehensive testing scenarios', agent=api_testing_agent, expected_output='Mock server with AI-generated test scenarios deployed' ) performance_task = Task( description='Execute AI-optimized performance testing and analysis', agent=performance_agent, expected_output='Comprehensive performance analysis with AI recommendations' ) security_task = Task( description='Conduct AI-driven security testing and vulnerability assessment', agent=security_agent, expected_output='Security test results with AI-powered threat analysis' ) # Create AI testing crew ai_testing_crew = Crew( agents=[api_testing_agent, performance_agent, security_agent], tasks=[ai_setup_task, performance_task, security_task], verbose=True ) # Execute AI-native testing workflow results = ai_testing_crew.kickoff()

LangChain AI Testing Tools

from langchain.agents import Tool, AgentExecutor, create_react_agent from langchain.prompts import PromptTemplate from langchain_openai import ChatOpenAI from mockloop_mcp import MockLoopClient # Initialize MockLoop client mockloop = MockLoopClient() # AI-Native Testing Tools def ai_generate_mock_api(spec_path: str) -> str: """Generate AI-enhanced mock API with intelligent scenarios""" # Generate mock API result = mockloop.generate_mock_api(spec_url_or_path=spec_path) # Use AI to analyze and enhance analysis = mockloop.analyze_openapi_for_testing( api_spec=spec_path, analysis_depth="comprehensive", include_security_tests=True ) return f"AI-enhanced mock API generated: {result}\nAI Analysis: {analysis['summary']}" def ai_execute_testing_workflow(server_url: str) -> str: """Execute comprehensive AI-driven testing workflow""" # Create test session context session = mockloop.create_test_session_context( session_name="ai_testing_session", configuration={"ai_enhanced": True} ) # Generate and deploy AI scenarios scenarios = mockloop.generate_scenario_config( api_spec=server_url, scenario_types=["load", "error", "security"], ai_optimization=True ) results = [] for scenario in scenarios: # Deploy scenario mockloop.deploy_scenario( server_url=server_url, scenario_config=scenario ) # Execute tests with AI monitoring test_result = mockloop.execute_test_plan( server_url=server_url, test_plan=scenario["test_plan"], ai_monitoring=True ) results.append(test_result) # AI-powered analysis analysis = mockloop.analyze_test_results( test_results=results, include_recommendations=True, ai_insights=True ) return f"AI testing workflow completed: {analysis['summary']}" # Create LangChain tools ai_testing_tools = [ Tool( name="AIGenerateMockAPI", func=ai_generate_mock_api, description="Generate AI-enhanced mock API with intelligent testing scenarios" ), Tool( name="AIExecuteTestingWorkflow", func=ai_execute_testing_workflow, description="Execute comprehensive AI-driven testing workflow with intelligent analysis" ) ] # Create AI testing agent llm = ChatOpenAI(temperature=0) ai_testing_prompt = PromptTemplate.from_template(""" You are an AI-native testing assistant powered by MockLoop MCP. You have access to revolutionary AI-driven testing capabilities including: - AI-powered scenario generation - Intelligent test execution - Advanced performance analysis - Security vulnerability assessment - Stateful workflow management Tools available: {tools} Tool names: {tool_names} Question: {input} {agent_scratchpad} """) agent = create_react_agent(llm, ai_testing_tools, ai_testing_prompt) agent_executor = AgentExecutor(agent=agent, tools=ai_testing_tools, verbose=True) # Execute AI-native testing response = agent_executor.invoke({ "input": "Generate a comprehensive AI-driven testing environment for a REST API and execute full testing workflow" })

🏗️ Dual-Port Architecture

MockLoop MCP introduces a revolutionary dual-port architecture that eliminates common conflicts and enhances security:

Architecture Benefits

  • 🔒 Enhanced Security: Complete separation of mocked API and admin functionality

  • ⚡ Zero Conflicts: Eliminates /admin path conflicts in OpenAPI specifications

  • 📊 Clean Analytics: Admin calls don't appear in mocked API metrics

  • 🔄 Independent Scaling: Scale mocked API and admin services separately

  • 🛡️ Port-Based Access Control: Enhanced security through network isolation

Port Configuration

# Generate mock with dual-port architecture result = mockloop.generate_mock_api( spec_url_or_path="https://api.example.com/openapi.json", business_port=8000, # Mocked API port admin_port=8001, # Admin UI port admin_ui_enabled=True )

Access Points

  • Mocked API: http://localhost:8000 - Your API endpoints

  • Admin UI: http://localhost:8001 - Management interface

  • API Documentation: http://localhost:8000/docs - Interactive Swagger UI

  • Health Check: http://localhost:8000/health - Server status

📊 Enterprise Features

Compliance & Audit Logging

MockLoop MCP provides enterprise-grade compliance features:

  • Complete Audit Trails: Every request/response logged with metadata

  • Regulatory Compliance: GDPR, SOX, HIPAA compliance support

  • Performance Metrics: P95/P99 response times, error rates

  • Security Monitoring: Threat detection and analysis

  • Session Tracking: Cross-request correlation and analysis

Advanced Analytics

  • AI-Powered Insights: Intelligent analysis and recommendations

  • Traffic Pattern Detection: Automated anomaly detection

  • Performance Optimization: AI-driven performance recommendations

  • Error Analysis: Intelligent error categorization and resolution

  • Trend Analysis: Historical performance and usage trends

🔄 Stateful Testing Workflows

MockLoop MCP supports complex, stateful testing workflows through advanced context management:

Context Types

  • Test Session Context: Maintain state across test executions

  • Workflow Context: Complex multi-step testing orchestration

  • Agent Context: AI agent state management and coordination

  • Global Context: Cross-session data sharing and persistence

Example: Stateful E-commerce Testing

# Create test session context session = mockloop.create_test_session_context( session_name="ecommerce_integration_test", configuration={ "test_type": "integration", "environment": "staging", "ai_enhanced": True } ) # Create workflow context for multi-step testing workflow = mockloop.create_workflow_context( workflow_name="user_journey_test", parent_context=session["context_id"], steps=[ "user_registration", "product_browsing", "cart_management", "checkout_process", "order_fulfillment" ] ) # Execute stateful test workflow for step in workflow["steps"]: # Update context with step data mockloop.update_context_data( context_id=workflow["context_id"], data={"current_step": step, "timestamp": datetime.now()} ) # Execute step-specific tests test_result = mockloop.execute_test_plan( server_url="http://localhost:8000", test_plan=f"{step}_test_plan", context_id=workflow["context_id"] ) # Create snapshot for rollback capability snapshot = mockloop.create_context_snapshot( context_id=workflow["context_id"], snapshot_name=f"{step}_completion" ) # Analyze complete workflow results final_analysis = mockloop.analyze_test_results( test_results=workflow["results"], context_id=workflow["context_id"], include_recommendations=True )

🚀 Running Generated Mock Servers

Using Docker Compose (Recommended)

# Navigate to generated mock directory cd generated_mocks/your_api_mock # Start with dual-port architecture docker-compose up --build # Access points: # Mocked API: http://localhost:8000 # Admin UI: http://localhost:8001

Using Uvicorn Directly

# Install dependencies pip install -r requirements_mock.txt # Start the mock server uvicorn main:app --reload --port 8000

Enhanced Features Access

  • Admin UI: http://localhost:8001 - Enhanced management interface

  • API Documentation: http://localhost:8000/docs - Interactive Swagger UI

  • Health Check: http://localhost:8000/health - Server status and metrics

  • Log Analytics: http://localhost:8001/api/logs/search - Advanced log querying

  • Performance Metrics: http://localhost:8001/api/logs/analyze - AI-powered insights

  • Scenario Management: http://localhost:8001/api/mock-data/scenarios - Dynamic testing

📈 Performance & Scalability

MockLoop MCP is designed for enterprise-scale performance:

Performance Metrics

  • Response Times: P50, P95, P99 percentile tracking

  • Throughput: Requests per second monitoring

  • Error Rates: Comprehensive error analysis

  • Resource Usage: Memory, CPU, and network monitoring

  • Concurrency: Multi-user load testing support

Scalability Features

  • Horizontal Scaling: Multi-instance deployment support

  • Load Balancing: Built-in load balancing capabilities

  • Caching: Intelligent response caching

  • Database Optimization: Efficient SQLite and PostgreSQL support

  • Container Orchestration: Kubernetes and Docker Swarm ready

🔒 Security Features

Built-in Security

  • Authentication Middleware: Configurable auth mechanisms

  • Rate Limiting: Prevent abuse and DoS attacks

  • Input Validation: Comprehensive request validation

  • Security Headers: CORS, CSP, and security headers

  • Audit Logging: Complete security event logging

Security Testing

  • Vulnerability Assessment: AI-powered security testing

  • Penetration Testing: Automated security scenario generation

  • Compliance Checking: Security standard compliance verification

  • Threat Modeling: AI-driven threat analysis

  • Security Reporting: Comprehensive security analytics

🔐 SchemaPin Integration - Cryptographic Schema Verification

MockLoop MCP now includes SchemaPin integration - the industry's first cryptographic schema verification system for MCP tools, preventing "MCP Rug Pull" attacks through ECDSA signature verification and Trust-On-First-Use (TOFU) key pinning.

Revolutionary Security Enhancement

SchemaPin integration transforms MockLoop MCP into the most secure MCP testing platform by providing:

  • 🔐 Cryptographic Verification: ECDSA P-256 signatures ensure schema integrity

  • 🔑 TOFU Key Pinning: Automatic key discovery and pinning for trusted domains

  • 📋 Policy Enforcement: Configurable security policies (enforce/warn/log modes)

  • 📊 Comprehensive Auditing: Complete verification logs for compliance

  • 🔄 Graceful Fallback: Works with or without SchemaPin library

  • 🏗️ Hybrid Architecture: Seamless integration with existing MockLoop systems

Quick Start Configuration

from mockloop_mcp.schemapin import SchemaPinConfig, SchemaVerificationInterceptor # Basic configuration config = SchemaPinConfig( enabled=True, policy_mode="warn", # enforce, warn, or log auto_pin_keys=False, trusted_domains=["api.example.com"], interactive_mode=False ) # Initialize verification interceptor = SchemaVerificationInterceptor(config) # Verify tool schema result = await interceptor.verify_tool_schema( tool_name="database_query", schema=tool_schema, signature="base64_encoded_signature", domain="api.example.com" ) if result.valid: print("✓ Schema verification successful") else: print(f"✗ Verification failed: {result.error}")

Production Configuration

# Production-ready configuration config = SchemaPinConfig( enabled=True, policy_mode="enforce", # Block execution on verification failure auto_pin_keys=True, # Auto-pin keys for trusted domains key_pin_storage_path="/secure/path/keys.db", discovery_timeout=60, cache_ttl=7200, trusted_domains=[ "api.corp.com", "tools.internal.com" ], well_known_endpoints={ "api.corp.com": "https://api.corp.com/.well-known/schemapin.json" }, revocation_check=True, interactive_mode=False )

Security Benefits

MCP Rug Pull Protection

SchemaPin prevents malicious actors from modifying tool schemas without detection:

  • Cryptographic Signatures: Every tool schema is cryptographically signed

  • Key Pinning: TOFU model prevents man-in-the-middle attacks

  • Audit Trails: Complete verification logs for security analysis

  • Policy Enforcement: Configurable responses to verification failures

Compliance & Governance

  • Regulatory Compliance: Audit logs support GDPR, SOX, HIPAA requirements

  • Enterprise Security: Integration with existing security frameworks

  • Risk Management: Configurable security policies for different environments

  • Threat Detection: Automated detection of schema tampering attempts

Integration Examples

Basic Tool Verification

# Verify a single tool from mockloop_mcp.schemapin import SchemaVerificationInterceptor interceptor = SchemaVerificationInterceptor(config) result = await interceptor.verify_tool_schema( "api_call", tool_schema, signature, "api.example.com" )

Batch Verification

# Verify multiple tools efficiently from mockloop_mcp.schemapin import SchemaPinWorkflowManager workflow = SchemaPinWorkflowManager(config) results = await workflow.verify_tool_batch([ {"name": "tool1", "schema": schema1, "signature": sig1, "domain": "api.com"}, {"name": "tool2", "schema": schema2, "signature": sig2, "domain": "api.com"} ])

MCP Proxy Integration

# Integrate with MCP proxy for seamless security class SecureMCPProxy: def __init__(self, config): self.interceptor = SchemaVerificationInterceptor(config) async def proxy_tool_request(self, tool_name, schema, signature, domain, data): # Verify schema before execution result = await self.interceptor.verify_tool_schema( tool_name, schema, signature, domain ) if not result.valid: return {"error": "Schema verification failed"} # Execute tool with verified schema return await self.execute_tool(tool_name, data)

Policy Modes

Enforce Mode

config = SchemaPinConfig(policy_mode="enforce") # Blocks execution on verification failure # Recommended for production critical tools

Warn Mode

config = SchemaPinConfig(policy_mode="warn") # Logs warnings but allows execution # Recommended for gradual rollout

Log Mode

config = SchemaPinConfig(policy_mode="log") # Logs events without blocking # Recommended for monitoring and testing

Key Management

Trust-On-First-Use (TOFU)

# Automatic key discovery and pinning key_manager = KeyPinningManager("keys.db") # Pin key for trusted tool success = key_manager.pin_key( tool_id="api.example.com/database_query", domain="api.example.com", public_key_pem=discovered_key, metadata={"developer": "Example Corp"} ) # Check if key is pinned if key_manager.is_key_pinned("api.example.com/database_query"): print("Key is pinned and trusted")

Key Discovery

SchemaPin automatically discovers public keys via .well-known endpoints:

https://api.example.com/.well-known/schemapin.json

Expected format:

{ "public_key": "-----BEGIN PUBLIC KEY-----\n...\n-----END PUBLIC KEY-----", "algorithm": "ES256", "created_at": "2023-01-01T00:00:00Z" }

Audit & Compliance

Comprehensive Logging

from mockloop_mcp.schemapin import SchemaPinAuditLogger audit_logger = SchemaPinAuditLogger("audit.db") # Verification events are automatically logged stats = audit_logger.get_verification_stats() print(f"Total verifications: {stats['total_verifications']}") print(f"Success rate: {stats['successful_verifications'] / stats['total_verifications'] * 100:.1f}%")

Compliance Reporting

# Generate compliance reports from mockloop_mcp.mcp_compliance import MCPComplianceReporter reporter = MCPComplianceReporter("audit.db") report = reporter.generate_schemapin_compliance_report() print(f"Compliance score: {report['compliance_score']:.1f}%") print(f"Verification coverage: {report['verification_statistics']['unique_tools']} tools")

Documentation & Examples

Migration for Existing Users

SchemaPin integration is completely backward compatible:

  1. Opt-in Configuration: SchemaPin is disabled by default

  2. No Breaking Changes: Existing tools continue to work unchanged

  3. Gradual Rollout: Start with log mode, progress to warn, then enforce

  4. Zero Downtime: Enable verification without service interruption

# Migration example: gradual rollout # Phase 1: Monitoring (log mode) config = SchemaPinConfig(enabled=True, policy_mode="log") # Phase 2: Warnings (warn mode) config = SchemaPinConfig(enabled=True, policy_mode="warn") # Phase 3: Enforcement (enforce mode) config = SchemaPinConfig(enabled=True, policy_mode="enforce")

Performance Impact

SchemaPin is designed for minimal performance impact:

  • Verification Time: ~5-15ms per tool (cached results)

  • Memory Usage: <10MB additional memory

  • Network Overhead: Key discovery only on first use

  • Database Size: ~1KB per pinned key

Use Cases

Development Teams

  • Secure Development: Verify tool schemas during development

  • Code Review: Ensure schema integrity in pull requests

  • Testing: Validate tool behavior with verified schemas

Enterprise Security

  • Threat Prevention: Block malicious schema modifications

  • Compliance: Meet regulatory requirements with audit trails

  • Risk Management: Configurable security policies

  • Incident Response: Detailed logs for security analysis

DevOps & CI/CD

  • Pipeline Security: Verify schemas in deployment pipelines

  • Environment Promotion: Ensure schema consistency across environments

  • Monitoring: Continuous verification monitoring

  • Automation: Automated security policy enforcement

�️ Future Development

Upcoming Features 🚧

Enhanced AI Capabilities

  • Advanced ML Models: Custom model training for API testing

  • Predictive Analytics: AI-powered failure prediction

  • Intelligent Test Generation: Self-improving test scenarios

  • Natural Language Testing: Plain English test descriptions

Extended Protocol Support

  • GraphQL Support: Native GraphQL API testing

  • gRPC Integration: Protocol buffer testing support

  • WebSocket Testing: Real-time communication testing

  • Event-Driven Testing: Async and event-based API testing

Enterprise Integration

  • CI/CD Integration: Native pipeline integration

  • Monitoring Platforms: Datadog, New Relic, Prometheus integration

  • Identity Providers: SSO and enterprise auth integration

  • Compliance Frameworks: Extended regulatory compliance support

🤝 Contributing

We welcome contributions to MockLoop MCP! Please see our Contributing Guidelines for details.

Development Setup

# Fork and clone the repository git clone https://github.com/your-username/mockloop-mcp.git cd mockloop-mcp # Create development environment python3 -m venv .venv source .venv/bin/activate # Install development dependencies pip install -e ".[dev]" # Run tests pytest tests/ # Run quality checks ruff check src/ bandit -r src/

Community

📄 License

MockLoop MCP is licensed under the MIT License.


🎉 Get Started Today!

Ready to revolutionize your API testing with the world's first AI-native testing platform?

pip install mockloop-mcp

Join the AI-native testing revolution and experience the future of API testing with MockLoop MCP!

🚀

-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

A Model Context Protocol server that generates and runs mock API servers from API documentation like OpenAPI/Swagger specs, enabling developers and AI assistants to quickly spin up mock backends for development and testing.

  1. 🌟 What Makes MockLoop MCP Revolutionary?
    1. 🎯 Core AI-Native Architecture
      1. MCP Audit Logging
      2. MCP Prompts (5 AI-Driven Capabilities)
      3. MCP Resources (15 Scenario Packs)
      4. MCP Tools (16 Automated Testing Tools)
      5. MCP Context Management (10 Stateful Workflow Tools)
    2. 🚀 Quick Start
      1. 📋 Prerequisites
        1. 🔧 Installation
          1. Option 1: Install from PyPI (Recommended)
          2. Option 2: Development Installation
        2. ⚙️ Configuration
          1. MCP Client Configuration
        3. 🛠️ Available MCP Tools
          1. Core Mock Generation
          2. Advanced Analytics
        4. 🌐 MCP Proxy Functionality
          1. Core Proxy Capabilities
          2. Operational Modes
          3. Quick Start Example
          4. Advanced Features
          5. Authentication Support
          6. Use Cases
        5. 🤖 AI Framework Integration
          1. LangGraph Integration
          2. CrewAI Multi-Agent Testing
          3. LangChain AI Testing Tools
        6. 🏗️ Dual-Port Architecture
          1. Architecture Benefits
          2. Port Configuration
          3. Access Points
        7. 📊 Enterprise Features
          1. Compliance & Audit Logging
          2. Advanced Analytics
        8. 🔄 Stateful Testing Workflows
          1. Context Types
          2. Example: Stateful E-commerce Testing
        9. 🚀 Running Generated Mock Servers
          1. Using Docker Compose (Recommended)
          2. Using Uvicorn Directly
          3. Enhanced Features Access
        10. 📈 Performance & Scalability
          1. Performance Metrics
          2. Scalability Features
        11. 🔒 Security Features
          1. Built-in Security
          2. Security Testing
        12. 🔐 SchemaPin Integration - Cryptographic Schema Verification
          1. Revolutionary Security Enhancement
          2. Quick Start Configuration
          3. Production Configuration
          4. Security Benefits
          5. Integration Examples
          6. Policy Modes
          7. Key Management
          8. Audit & Compliance
          9. Documentation & Examples
          10. Migration for Existing Users
          11. Performance Impact
          12. Use Cases
        13. �️ Future Development
          1. Upcoming Features 🚧
        14. 🤝 Contributing
          1. Development Setup
          2. Community
        15. 📄 License
          1. 🎉 Get Started Today!

            Related MCP Servers

            • -
              security
              A
              license
              -
              quality
              A server that enables interaction with any API that has a Swagger/OpenAPI specification through Model Context Protocol (MCP), automatically generating tools from API endpoints and supporting multiple authentication methods.
              Last updated -
              20
              102
              Apache 2.0
            • A
              security
              F
              license
              A
              quality
              A server based on Model Context Protocol that parses Swagger/OpenAPI documents and generates TypeScript types and API client code for different frameworks (Axios, Fetch, React Query).
              Last updated -
              12
              11
              16
            • A
              security
              A
              license
              A
              quality
              A tool that creates MCP (Model Context Protocol) servers from OpenAPI/Swagger specifications, enabling AI assistants to interact with your APIs.
              Last updated -
              3
              5
              24
              MIT License
              • Apple
            • -
              security
              A
              license
              -
              quality
              An Intelligent Model Context Protocol server that generates mock servers from OpenAPI specifications, featuring advanced logging, performance analytics, and server discovery for AI-assisted API development.
              Last updated -
              MIT License

            View all related MCP servers

            MCP directory API

            We provide all the information about MCP servers via our MCP API.

            curl -X GET 'https://glama.ai/api/mcp/v1/servers/MockLoop/mockloop-mcp'

            If you have feedback or need assistance with the MCP directory API, please join our Discord server