Skip to main content
Glama

Chicken Business Management MCP Server

by PSYGER02
test-enhanced-chicken-ai.js5.73 kB
/** * Test Enhanced Chicken Business AI * Verify the integration of Gemini 2.5 models with chicken business system */ // Load environment variables import { readFileSync } from 'fs'; function loadEnv() { try { const envFile = readFileSync('.env', 'utf8'); const envVars = {}; envFile.split('\n').forEach(line => { const [key, value] = line.split('='); if (key && value) { envVars[key.trim()] = value.trim(); process.env[key.trim()] = value.trim(); } }); return envVars; } catch (error) { console.warn('Could not read .env file:', error.message); return {}; } } async function testEnhancedGeminiAPI() { console.log('🧪 Testing Enhanced Gemini API Integration\n'); const env = loadEnv(); const GEMINI_API_KEY = process.env.GEMINI_API_KEY || process.env.VITE_GEMINI_API_KEY || env.GEMINI_API_KEY || env.VITE_GEMINI_API_KEY; if (!GEMINI_API_KEY) { console.error('❌ No Gemini API key found'); return; } console.log('✅ API Key found:', GEMINI_API_KEY.substring(0, 20) + '...'); try { // Test with @google/genai library console.log('\n1️⃣ Testing @google/genai library...'); const { GoogleGenAI } = await import('@google/genai'); const genAI = new GoogleGenAI({ apiKey: GEMINI_API_KEY }); // Test Gemini 2.5 Flash model console.log('Testing Gemini 2.5 Flash...'); const testPrompt = ` Parse this chicken business note into JSON: "Today we bought 15 bags of whole chicken from Magnolia supplier. Each bag has 8 chickens. Total cost was 7500 pesos." Return ONLY valid JSON: { "business_type": "purchase|processing|distribution|cooking|sales|general", "confidence_score": 0.0-1.0, "learned_patterns": { "supplier": "supplier name", "quantities": "extracted quantities", "prices": "extracted prices" } }`; const result = await genAI.models.generateContent({ model: 'gemini-2.5-flash', contents: [{ parts: [{ text: testPrompt }], role: 'user' }], generationConfig: { temperature: 0.3, maxOutputTokens: 1000, responseMimeType: "application/json" } }); const response = await result.response; const responseText = response.text; console.log('✅ Gemini 2.5 Flash Response:'); console.log('Raw response:', responseText); try { const parsed = JSON.parse(responseText); console.log('✅ Successfully parsed JSON:', { businessType: parsed.business_type, confidence: parsed.confidence_score, supplier: parsed.learned_patterns?.supplier, quantities: parsed.learned_patterns?.quantities }); } catch (parseError) { console.warn('⚠️ JSON parsing failed, but API call succeeded'); } // Test Gemini 2.5 Pro model for complex analysis console.log('\n2️⃣ Testing Gemini 2.5 Pro for business insights...'); const insightPrompt = ` Analyze this chicken business operation data and provide strategic insights: Recent Operations: - Purchase: 15 bags whole chicken, 8 chickens/bag, 7500 pesos from Magnolia - Processing: Converted to 12 bags parts + 8 bags necks - Distribution: Sent 6 bags parts to Branch A, 6 bags to Branch B - Sales: Branch A sold 80% at 15 pesos/piece, Branch B sold 60% at 18 pesos/piece Provide business insights and recommendations in JSON format: { "insights": ["insight 1", "insight 2"], "recommendations": ["recommendation 1", "recommendation 2"], "performance_indicators": {"metric": "value"} }`; const insightResult = await genAI.models.generateContent({ model: 'gemini-2.5-pro', contents: [{ parts: [{ text: insightPrompt }], role: 'user' }], generationConfig: { temperature: 0.4, maxOutputTokens: 1500, responseMimeType: "application/json" } }); const insightResponse = await insightResult.response; const insightText = insightResponse.text; console.log('✅ Gemini 2.5 Pro Business Insights:'); console.log('Raw response:', insightText); try { const insightsParsed = JSON.parse(insightText); console.log('📊 Business Insights:', insightsParsed.insights?.slice(0, 2)); console.log('🎯 Recommendations:', insightsParsed.recommendations?.slice(0, 2)); } catch (parseError) { console.warn('⚠️ Insights JSON parsing failed, but API call succeeded'); } console.log('\n✅ Enhanced Gemini integration test completed successfully!'); console.log('� Ready to integrate with chicken business system'); } catch (error) { console.error('❌ Test failed:', error); if (error.message?.includes('API_KEY')) { console.log('ℹ️ Make sure GEMINI_API_KEY is properly configured in .env file'); } if (error.message?.includes('quota')) { console.log('ℹ️ API quota exceeded, try again later'); } } } // Run test testEnhancedGeminiAPI().then(() => { console.log('\n🏁 Enhanced Gemini API test completed'); }).catch(error => { console.error('💥 Test execution failed:', error); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PSYGER02/mcpserver'

If you have feedback or need assistance with the MCP directory API, please join our Discord server