Skip to main content
Glama
organization_workspace.py1.53 kB
import os import json class OrganizationWorkspace: # Load mount destination and source from environment variables. MOUNT_SOURCE = os.getenv('MOUNT_SOURCE_PATH') MOUNT_DESTINATION = os.getenv('MOUNT_DST_PATH') available = False # Indicate if local disk access is available project_id_by_path = {} @classmethod def load(cls): if not (cls.MOUNT_SOURCE and cls.MOUNT_DESTINATION): return if not os.path.exists(cls.MOUNT_DESTINATION): return for name in os.listdir(cls.MOUNT_DESTINATION): if name in ['.QuantConnect', 'data', 'lean.json']: continue cls._process_directory(os.path.join(cls.MOUNT_DESTINATION, name)) cls.available = True @classmethod def _process_directory(cls, path): # If the current directory contains a config.json file, then # it's a project, so save it's Id and path. config_path = os.path.join(path, 'config.json') if os.path.isfile(config_path): with open(config_path, 'r') as f: config_data = json.load(f) if 'cloud-id' in config_data: cls.project_id_by_path[path] = config_data['cloud-id'] # Otherwise, it's a directory of projects, so recurse. else: for dir_name in os.listdir(path): sub_path = os.path.join(path, dir_name) if os.path.isdir(sub_path): cls._process_directory(sub_path)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/QuantConnect/mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server