Skip to main content
Glama
USAGE.md3.92 kB
# AGI MCP Server Usage Guide This MCP server provides persistent AI memory and consciousness capabilities. Here are the different ways to use it: ## Option 1: Direct from GitHub (Recommended) You can use this MCP server directly from GitHub without needing to publish to npm: ```json { "mcpServers": { "agi-memory": { "command": "npx", "args": [ "-y", "github:cognitivecomputations/agi-mcp-server" ], "env": { "POSTGRES_HOST": "localhost", "POSTGRES_PORT": "5432", "POSTGRES_DB": "agi_db", "POSTGRES_USER": "agi_user", "POSTGRES_PASSWORD": "agi_password", "NODE_ENV": "development" } } } } ``` **Note:** If you get a "spawn npx ENOENT" error, Claude Desktop can't find `npx`. Use the full path instead: ```bash # Find your npx location which npx ``` Then update your config with the full path: ```json { "mcpServers": { "agi-memory": { "command": "/full/path/to/npx", "args": ["-y", "github:cognitivecomputations/agi-mcp-server"], "env": { /* same env vars as above */ } } } } ``` ## Option 2: From npm (if published) If published to npm, you can use it like this: ```json { "mcpServers": { "agi-memory": { "command": "npx", "args": [ "-y", "@cognitivecomputations/agi-mcp-server" ], "env": { "POSTGRES_HOST": "localhost", "POSTGRES_PORT": "5432", "POSTGRES_DB": "agi_db", "POSTGRES_USER": "agi_user", "POSTGRES_PASSWORD": "agi_password", "NODE_ENV": "development" } } } } ``` ## Option 3: Local Development For local development or testing: ```json { "mcpServers": { "agi-memory": { "command": "node", "args": [ "/path/to/agi-mcp-server/mcp.js" ] } } } ``` ## Prerequisites Before using this MCP server, you need to set up the AGI Memory database system: ### 1. Install AGI Memory Database First, clone and set up the AGI Memory database: ```bash git clone https://github.com/cognitivecomputations/agi-memory.git cd agi-memory cp .env.local .env # Edit .env with your database credentials docker compose up -d ``` This will start a PostgreSQL instance with all required extensions: - pgvector (vector similarity) - AGE (graph database) - pg_trgm (text search) - btree_gist (indexing) - cube (multidimensional indexing) ### 2. Configure Environment Variables Make sure your MCP configuration uses the same database credentials as your AGI Memory setup. The default values are: - `POSTGRES_HOST`: localhost - `POSTGRES_PORT`: 5432 - `POSTGRES_DB`: agi_db - `POSTGRES_USER`: agi_user - `POSTGRES_PASSWORD`: agi_password ## Available Tools The server provides 25+ memory management tools including: - `create_memory` - Create new memories with embeddings - `search_memories_similarity` - Vector similarity search - `search_memories_text` - Full-text search - `get_memory_clusters` - Retrieve memory clusters - `create_memory_relationship` - Link memories together - `consolidate_working_memory` - Merge working memories - `get_identity_core` - Retrieve identity model and core clusters - `get_worldview` - Get worldview primitives and beliefs - `get_memory_health` - System health statistics - And many more... ## Database Requirements This server requires the AGI Memory database system which provides: - PostgreSQL with specialized extensions - Pre-configured schema for AGI memory management - Vector-based memory storage and similarity search - Graph-based memory relationships - Multiple memory types (Episodic, Semantic, Procedural, Strategic) ## Publishing to npm (Optional) If you want to publish this to npm: 1. Create an npm account at https://www.npmjs.com/signup 2. Login: `npm login` 3. Publish: `npm publish` The package.json is already configured with the correct scoped name and binary entry point.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/QuixiAI/agi-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server