Skip to main content
Glama

Ultra MCP

index-vectors

Index project files for semantic search using vector embeddings, enabling efficient retrieval of relevant content. Supports multiple embedding providers and allows forced re-indexing for updated data.

Instructions

Index project files for semantic search using vector embeddings

Input Schema

NameRequiredDescriptionDefault
forceNoForce re-indexing of all files
pathNoProject path to index (defaults to current directory)/app
providerNoEmbedding provider to use (defaults to configured provider)

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "additionalProperties": false, "properties": { "force": { "default": false, "description": "Force re-indexing of all files", "type": "boolean" }, "path": { "default": "/app", "description": "Project path to index (defaults to current directory)", "type": "string" }, "provider": { "description": "Embedding provider to use (defaults to configured provider)", "enum": [ "openai", "azure", "gemini" ], "type": "string" } }, "type": "object" }
Install Server

Other Tools from Ultra MCP

Related Tools

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/RealMikeChong/ultra-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server