Skip to main content
Glama
test_workflow_files_examined.py1.79 kB
from __future__ import annotations import types from tools.workflow.workflow_mixin import BaseWorkflowMixin class DummyTool(BaseWorkflowMixin): def get_name(self) -> str: return "dummy" def get_workflow_request_model(self) -> type: return type("Req", (), {}) def get_system_prompt(self) -> str: return "" def get_language_instruction(self) -> str: return "" def get_default_temperature(self) -> float: return 0.2 def get_model_provider(self, model_name: str): return None def _resolve_model_context(self, arguments, request): return ("auto", None) def _prepare_file_content_for_prompt(self, request_files, continuation_id, context_description="New files", max_tokens=None, reserve_tokens=1000, remaining_budget=None, arguments=None, model_context=None): # Return processed files unchanged to simulate embedding return ("CONTENT", list(request_files)) def get_work_steps(self, request): return [] def get_required_actions(self, step_number, confidence, findings, total_steps): return [] def requires_expert_analysis(self) -> bool: return True def should_include_files_in_expert_prompt(self) -> bool: return False def test_files_examined_updates_on_embed(): tool = DummyTool() class Req: step = "s" step_number = 1 total_steps = 1 next_step_required = False # final step triggers embedding findings = "f" relevant_files = ["a.py", "b.py"] images = [] # Execute the critical embedding path tool._handle_workflow_file_context(Req, {"_model_context": types.SimpleNamespace(provider=None)}) # After embedding, files_examined should include actually processed files assert {"a.py", "b.py"}.issubset(tool.consolidated_findings.files_checked)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Zazzles2908/EX_AI-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server