Skip to main content
Glama

Semantic Scholar MCP Server

šŸ“š Semantic Scholar MCP Server

A comprehensive Model Context Protocol (MCP) server for seamless integration with Semantic Scholar's academic database

Python License

Maintainer: @alperenkocyigit

This powerful MCP server bridges the gap between AI assistants and academic research by providing direct access to Semantic Scholar's comprehensive database. Whether you're conducting literature reviews, exploring citation networks, or seeking academic insights, this server offers a streamlined interface to millions of research papers.

🌟 What Can You Do?

šŸ” Advanced Paper Discovery

  • Smart Search: Find papers using natural language queries

  • Bulk Operations: Process multiple papers simultaneously

  • Autocomplete: Get intelligent title suggestions as you type

  • Precise Matching: Find exact papers using title-based search

šŸŽÆ AI-Powered Recommendations

  • Smart Paper Recommendations: Get personalized paper suggestions based on your interests

  • Multi-Example Learning: Use multiple positive and negative examples to fine-tune recommendations

  • Single Paper Similarity: Find papers similar to a specific research work

  • Relevance Scoring: AI-powered relevance scores for better paper discovery

šŸ‘„ Author Research

  • Author Profiles: Comprehensive author information and metrics

  • Bulk Author Data: Fetch multiple author profiles at once

  • Author Search: Discover researchers by name or affiliation

šŸ“Š Citation Analysis

  • Citation Networks: Explore forward and backward citations

  • Reference Mapping: Understand paper relationships

  • Impact Metrics: Access citation counts and paper influence

šŸ’” Content Discovery

  • Text Snippets: Search within paper content

  • Contextual Results: Find relevant passages and quotes

  • Full-Text Access: When available through Semantic Scholar


Related MCP server: Healthcare MCP Server

šŸ› ļø Quick Setup

System Requirements

  • Python: 3.10 or higher

  • Dependencies: requests, mcp, bs4, pydantic, uvicorn, httpx, anyio

  • Network: Stable internet connection for API access

šŸ†• NEW: MCP Streamable HTTP Transport

This server now implements the MCP Streamable HTTP transport protocol, providing:

  • 20x Higher Concurrency: Handle significantly more simultaneous requests

  • Lower Latency: Direct HTTP communication for faster response times

  • Better Resource Efficiency: More efficient resource utilization

  • Future-Proofing: HTTP is the recommended transport in MCP specifications

The server uses FastMCP for seamless MCP protocol compliance and optimal performance.

šŸš€ Installation Options

⚔ One-Click Install with Smithery

For Claude Desktop:

npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client claude --config "{}"

For Cursor IDE: Navigate to Settings → Cursor Settings → MCP → Add new server and paste:

npx -y @smithery/cli@latest run @alperenkocyigit/semantic-scholar-graph-api --client cursor --config "{}"

For Windsurf:

npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client windsurf --config "{}"

For Cline:

npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client cline --config "{}"

šŸ”§ Manual Installation

  1. Clone the repository:

    git clone https://github.com/alperenkocyigit/semantic-scholar-graph-api.git cd semantic-scholar-graph-api
  2. Install dependencies:

    pip install -r requirements.txt
  3. Run the MCP Streamable HTTP server:

    python server.py

šŸ”§ Configuration Guide

Local Setups

Claude Desktop Setup

macOS/Linux Configuration: Add to your claude_desktop_config.json:

{ "mcpServers": { "semanticscholar": { "command": "python", "args": ["/path/to/your/semantic_scholar_server.py"] } } }

Windows Configuration:

{ "mcpServers": { "semanticscholar": { "command": "C:\\Users\\YOUR_USERNAME\\miniconda3\\envs\\mcp_server\\python.exe", "args": ["D:\\path\\to\\your\\semantic_scholar_server.py"], "env": {}, "disabled": false, "autoApprove": [] } } }

Cline Integration

{ "mcpServers": { "semanticscholar": { "command": "bash", "args": [ "-c", "source /path/to/your/.venv/bin/activate && python /path/to/your/semantic_scholar_server.py" ], "env": {}, "disabled": false, "autoApprove": [] } } }

Remote Setups

Auto Configuration

npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client <valid-client-name> --key <your-smithery-api-key>

Valid client names: [claude,cursor,vscode,boltai]

Json Configuration

macOS/Linux Configuration:

{ "mcpServers": { "semantic-scholar-graph-api": { "command": "npx", "args": [ "-y", "@smithery/cli@latest", "run", "@alperenkocyigit/semantic-scholar-graph-api", "--key", "your-smithery-api-key" ] } } }

Windows Configuration:

{ "mcpServers": { "semantic-scholar-graph-api": { "command": "cmd", "args": [ "/c", "npx", "-y", "@smithery/cli@latest", "run", "@alperenkocyigit/semantic-scholar-graph-api", "--key", "your-smithery-api-key" ] } } }

WSL Configuration:

{ "mcpServers": { "semantic-scholar-graph-api": { "command": "wsl", "args": [ "npx", "-y", "@smithery/cli@latest", "run", "@alperenkocyigit/semantic-scholar-graph-api", "--key", "your-smithery-api-key" ] } } }

šŸŽÆ Available Tools

Tool

Description

Use Case

search_semantic_scholar

Search papers by query

Literature discovery

search_semantic_scholar_authors

Find authors by name

Researcher identification

get_semantic_scholar_paper_details

Get comprehensive paper info

Detailed analysis

get_semantic_scholar_author_details

Get author profiles

Author research

get_semantic_scholar_citations_and_references

Fetch citation network

Impact analysis

get_semantic_scholar_paper_match

Find exact paper matches

Precise searching

get_semantic_scholar_paper_autocomplete

Get title suggestions

Smart completion

get_semantic_scholar_papers_batch

Bulk paper retrieval

Batch processing

get_semantic_scholar_authors_batch

Bulk author data

Mass analysis

search_semantic_scholar_snippets

Search text content

Content discovery

get_semantic_scholar_paper_recommendations_from_lists

Get recommendations from positive/negative examples

AI-powered discovery

get_semantic_scholar_paper_recommendations

Get recommendations from single paper

Similar paper finding


šŸ’” Usage Examples

Basic Paper Search

# Search for papers on machine learning results = await search_semantic_scholar("machine learning", num_results=5)

Author Research

# Find authors working on natural language processing authors = await search_semantic_scholar_authors("natural language processing")

Citation Analysis

# Get citation network for a specific paper citations = await get_semantic_scholar_citations_and_references("paper_id_here")

šŸ†• AI-Powered Paper Recommendations

Multi-Example Recommendations

# Get recommendations based on multiple positive and negative examples positive_papers = ["paper_id_1", "paper_id_2", "paper_id_3"] negative_papers = ["bad_paper_id_1", "bad_paper_id_2"] recommendations = await get_semantic_scholar_paper_recommendations_from_lists( positive_paper_ids=positive_papers, negative_paper_ids=negative_papers, limit=20 )

Single Paper Similarity

# Find papers similar to a specific research work similar_papers = await get_semantic_scholar_paper_recommendations( paper_id="target_paper_id", limit=15 )

Content Discovery

# Search for specific text content within papers snippets = await search_semantic_scholar_snippets( query="neural network optimization", limit=10 )

šŸ“‚ Project Architecture

semantic-scholar-graph-api/ ā”œā”€ā”€ šŸ“„ README.md # Project documentation ā”œā”€ā”€ šŸ“‹ requirements.txt # Python dependencies ā”œā”€ā”€ šŸ” search.py # Core API interaction module ā”œā”€ā”€ šŸ–„ļø server.py # MCP server implementation └── šŸ—‚ļø __pycache__/ # Compiled Python files

Core Components

  • search.py: Handles all interactions with the Semantic Scholar API, including rate limiting, error handling, and data processing

  • server.py: Implements the MCP server protocol and exposes tools for AI assistant integration


šŸ¤ Contributing

We welcome contributions from the community! Here's how you can help:

Ways to Contribute

  • šŸ› Bug Reports: Found an issue? Let us know!

  • šŸ’” Feature Requests: Have ideas for improvements?

  • šŸ”§ Code Contributions: Submit pull requests

  • šŸ“– Documentation: Help improve our docs

Development Setup

  1. Fork the repository

  2. Create a feature branch: git checkout -b feature/amazing-feature

  3. Make your changes and test thoroughly

  4. Commit your changes: git commit -m 'Add amazing feature'

  5. Push to the branch: git push origin feature/amazing-feature

  6. Open a Pull Request


šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


šŸ™ Acknowledgments

  • Semantic Scholar Team for providing the excellent API

  • Model Context Protocol community for the framework

  • Contributors who help improve this project


šŸ“ž Support


-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/alperenkocyigit/semantic-scholar-graph-api'

If you have feedback or need assistance with the MCP directory API, please join our Discord server