Skip to main content
Glama

Ambivo MCP Server

Official
by ambivo-corp
README.md5.08 kB
# Ambivo Claude MCP Server This Claude MCP (Model Context Protocol) server provides access to Ambivo API endpoints for natural language querying of entity data with Claude AI. ## Features - **Natural Language Queries**: Execute natural language queries against entity data using the `/entity/natural_query` endpoint - **JWT Authentication**: Secure access using Bearer token authentication - **Rate Limiting**: Built-in rate limiting to prevent API abuse - **Token Caching**: Efficient token validation with caching - **Error Handling**: Comprehensive error handling with detailed error messages - **Retry Logic**: Automatic retry with exponential backoff for failed requests ## Tools ### 1. `set_auth_token` Set the JWT Bearer token for authentication with the Ambivo API. **Parameters:** - `token` (string, required): JWT Bearer token **Usage:** ```json { "token": "your-jwt-token-here" } ``` ### 2. `natural_query` Execute natural language queries against Ambivo entity data. **Parameters:** - `query` (string, required): Natural language query describing what data you want - `response_format` (string, optional): Response format - "table", "natural", or "both" (default: "both") **Example queries:** - "Show me leads created this week" - "Find contacts with gmail addresses" - "List opportunities worth more than $10,000" - "Show me leads with attribution_source google_ads from the last 7 days" **Usage:** ```json { "query": "Show me leads created this week with attribution_source google_ads", "response_format": "both" } ``` ## About This is a pure Claude-based MCP server implementation for the Ambivo API, designed to work seamlessly with Claude Desktop and other Claude-compatible MCP clients. It enables natural language interaction with your Ambivo CRM data through Claude's powerful language understanding capabilities. ## Installation ### Option 1: Install from PyPI (Recommended) ```bash pip install ambivo-mcp-server ``` ### Option 2: Install from Source ```bash git clone https://github.com/ambivo-corp/ambivo-mcp-server.git cd ambivo-mcp-server pip install -e . ``` ## Running the Server ```bash # If installed via pip ambivo-mcp-server # Or using Python module python -m ambivo_mcp_server.server ``` ## Configuration The server uses the following default configuration: - **Base URL**: `https://goferapi.ambivo.com` - **Timeout**: 30 seconds - **Content Type**: `application/json` You can modify these settings in the `AmbivoAPIClient` class if needed. ## Authentication 1. First, set your authentication token using the `set_auth_token` tool 2. The token will be included in all subsequent API requests as a Bearer token 3. The token should be a valid JWT token from your Ambivo API authentication ## Error Handling The server provides comprehensive error handling: - **Authentication errors**: Clear messages when token is missing or invalid - **HTTP errors**: Detailed HTTP status codes and response messages - **Validation errors**: Parameter validation with helpful error messages - **Network errors**: Timeout and connection error handling ## API Endpoints This MCP server interfaces with these Ambivo API endpoints: ### `/entity/natural_query` - **Method**: POST - **Purpose**: Process natural language queries for entity data retrieval - **Authentication**: Required (JWT Bearer token) - **Content-Type**: application/json ### `/entity/data` - **Method**: POST - **Purpose**: Direct entity data access with structured parameters - **Authentication**: Required (JWT Bearer token) - **Content-Type**: application/json ## Example Workflow 1. **Set Authentication**: ```json { "tool": "set_auth_token", "arguments": { "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..." } } ``` 2. **Natural Language Query**: ```json { "tool": "natural_query", "arguments": { "query": "Show me all leads created in the last 30 days with phone numbers", "response_format": "both" } } ``` 3. **Direct Entity Query**: ```json { "tool": "entity_data", "arguments": { "entity_type": "contact", "filters": {"email": {"$regex": "@gmail.com$"}}, "limit": 100, "sort": {"created_date": -1} } } ``` ## Development To extend this MCP server: 1. **Add new tools**: Implement additional tools in the `handle_list_tools()` and `handle_call_tool()` functions 2. **Modify API client**: Extend the `AmbivoAPIClient` class to support additional endpoints 3. **Update configuration**: Modify default settings in the configuration section ## Troubleshooting **Common Issues:** 1. **"Authentication required" error**: Ensure you've called `set_auth_token` first 2. **HTTP 401/403 errors**: Verify your JWT token is valid and not expired 3. **Connection timeout**: Check network connectivity and API endpoint availability 4. **Invalid parameters**: Review the tool schemas for required and optional parameters **Logging:** The server logs important events and errors. Check the console output for debugging information.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ambivo-corp/ambivo-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server