Skip to main content
Glama

Qdrant MCP Server

by andrewlwn77
Apache 2.0

Qdrant MCP Server

A Model Context Protocol (MCP) server that provides semantic memory capabilities using Qdrant vector database with configurable embedding providers.

Features

  • Multiple Embedding Providers:
    • OpenAI (text-embedding-3-small, text-embedding-3-large, text-embedding-ada-002)
    • Sentence Transformers (all-MiniLM-L6-v2, all-mpnet-base-v2, and more)
  • Semantic Search: Store and retrieve information using vector similarity
  • Flexible Configuration: Environment variables for all settings
  • MCP Tools: Store, find, delete, and list operations
  • Metadata Support: Attach custom metadata to stored content

Installation

The server is designed to be lightweight by default. When using OpenAI embeddings:

# For OpenAI embeddings (lightweight, no ML dependencies) uvx qdrant-mcp

For local embeddings with Sentence Transformers:

# For local embeddings (includes torch and other ML libraries) uvx --with sentence-transformers qdrant-mcp

Via pip (Development)

# Clone the repository git clone https://github.com/andrewlwn77/qdrant-mcp.git cd qdrant-mcp # Basic install (OpenAI embeddings only) pip install -e . # With local embeddings support pip install -e . sentence-transformers

Configuration

The server can be configured using environment variables:

Required Environment Variables

  • EMBEDDING_PROVIDER: Choose between openai or sentence-transformers
  • EMBEDDING_MODEL: Model name for the chosen provider
  • OPENAI_API_KEY: Required when using OpenAI embeddings

Optional Environment Variables

  • QDRANT_URL: Qdrant server URL (default: http://localhost:6333)
  • QDRANT_API_KEY: Qdrant API key (optional)
  • COLLECTION_NAME: Qdrant collection name (default: mcp_memory)
  • DEVICE: Device for sentence transformers (default: auto-detect)
  • DEFAULT_LIMIT: Default search results limit (default: 10)
  • SCORE_THRESHOLD: Minimum similarity score (default: 0.0)

Example Configuration

# OpenAI embeddings export EMBEDDING_PROVIDER=openai export EMBEDDING_MODEL=text-embedding-3-small export OPENAI_API_KEY=your-api-key # Sentence Transformers (local) export EMBEDDING_PROVIDER=sentence-transformers export EMBEDDING_MODEL=all-MiniLM-L6-v2

Supported Embedding Models

OpenAI Models

  • text-embedding-3-small (1536 dimensions) - Default
  • text-embedding-3-large (3072 dimensions)
  • text-embedding-ada-002 (1536 dimensions) - Legacy

Sentence Transformers Models

  • all-MiniLM-L6-v2 (384 dimensions) - Fast and efficient
  • all-mpnet-base-v2 (768 dimensions) - Higher quality
  • Any other Sentence Transformers model from Hugging Face

Usage

Starting the Server

# Development mode python -m qdrant_mcp.server # With MCP CLI mcp dev src/qdrant_mcp/server.py

MCP Tools

qdrant-store

Store content with semantic embeddings:

{ "content": "The capital of France is Paris", "metadata": "{\"category\": \"geography\", \"type\": \"fact\"}", "id": "optional-custom-id" }
qdrant-find

Search for relevant information:

{ "query": "What is the capital of France?", "limit": 5, "filter": "{\"category\": \"geography\"}", "score_threshold": 0.7 }
qdrant-delete

Delete stored items:

{ "ids": "id1,id2,id3" }
qdrant-list-collections

List all collections in Qdrant:

{}
qdrant-collection-info

Get information about the current collection:

{}

Integration with Claude Desktop

Add to your Claude Desktop configuration:

For OpenAI Embeddings (Lightweight)

{ "mcpServers": { "qdrant-memory": { "command": "uvx", "args": ["qdrant-mcp"], "env": { "EMBEDDING_PROVIDER": "openai", "EMBEDDING_MODEL": "text-embedding-3-small", "OPENAI_API_KEY": "your-api-key", "QDRANT_URL": "https://your-instance.qdrant.io", "QDRANT_API_KEY": "your-qdrant-api-key" } } } }

For Local Embeddings (Sentence Transformers)

{ "mcpServers": { "qdrant-memory": { "command": "uvx", "args": ["--with", "sentence-transformers", "qdrant-mcp"], "env": { "EMBEDDING_PROVIDER": "sentence-transformers", "EMBEDDING_MODEL": "all-MiniLM-L6-v2", "QDRANT_URL": "https://your-instance.qdrant.io", "QDRANT_API_KEY": "your-qdrant-api-key" } } } }

Development

Running Tests

# Install dev dependencies pip install -e ".[dev]" # Run tests pytest # Type checking mypy src/ # Linting ruff check src/

Project Structure

qdrant-mcp/ ├── src/ │ └── qdrant_mcp/ │ ├── __init__.py │ ├── server.py # MCP server implementation │ ├── settings.py # Configuration management │ ├── qdrant_client.py # Qdrant operations │ └── embeddings/ │ ├── base.py # Abstract base class │ ├── factory.py # Provider factory │ ├── openai.py # OpenAI implementation │ └── sentence_transformers.py # ST implementation └── tests/ └── test_server.py

Docker Support

FROM python:3.10-slim WORKDIR /app COPY . . RUN pip install -e . CMD ["python", "-m", "qdrant_mcp.server"]

License

Apache License 2.0

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    Facilitates knowledge graph representation with semantic search using Qdrant, supporting OpenAI embeddings for semantic similarity and robust HTTPS integration with file-based graph persistence.
    Last updated -
    11
    11
    TypeScript
    • Linux
    • Apple
  • A
    security
    A
    license
    A
    quality
    A Model Context Protocol server that enables semantic search capabilities by providing tools to manage Qdrant vector database collections, process and embed documents using various embedding services, and perform semantic searches across vector embeddings.
    Last updated -
    4
    51
    TypeScript
    MIT License
  • -
    security
    A
    license
    -
    quality
    Enables semantic search across multiple Qdrant vector database collections, supporting multi-query capability and providing semantically relevant document retrieval with configurable result counts.
    Last updated -
    46
    TypeScript
    MIT License
  • -
    security
    F
    license
    -
    quality
    This server enables semantic search capabilities using Qdrant vector database and OpenAI embeddings, allowing users to query collections, list available collections, and view collection information.
    Last updated -
    3
    Python

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/andrewlwn77/qdrant-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server