Skip to main content
Glama

CFM Tips - Cost Optimization MCP Server

by aws-samples
example_wellarchitected_output.py8.87 kB
#!/usr/bin/env python3 """ Example showing enhanced tool outputs with Well-Architected Framework recommendations """ import json from utils.documentation_links import add_documentation_links def show_enhanced_examples(): """Show examples of enhanced tool outputs with Well-Architected recommendations""" print("CFM Tips - Enhanced Output with Well-Architected Framework") print("=" * 70) print() # Example 1: EC2 Right-sizing with Well-Architected guidance print("1. EC2 Right-sizing Analysis - Enhanced Output:") print("-" * 50) ec2_result = { "status": "success", "data": { "underutilized_instances": [ { "instance_id": "i-1234567890abcdef0", "instance_type": "m5.2xlarge", "finding": "Overprovisioned", "avg_cpu_utilization": 8.5, "avg_memory_utilization": 12.3, "recommendation": { "recommended_instance_type": "m5.large", "estimated_monthly_savings": 180.50, "confidence": "High" } }, { "instance_id": "i-0987654321fedcba0", "instance_type": "c5.xlarge", "finding": "Underprovisioned", "avg_cpu_utilization": 85.2, "recommendation": { "recommended_instance_type": "c5.2xlarge", "estimated_monthly_cost_increase": 120.00, "performance_improvement": "40%" } } ], "count": 2, "total_monthly_savings": 180.50, "analysis_period": "14 days", "data_source": "AWS Compute Optimizer" }, "message": "Found 2 EC2 instances with optimization opportunities" } enhanced_ec2 = add_documentation_links(ec2_result, "ec2", "underutilized") # Show key sections print("Key Findings:") for instance in enhanced_ec2["data"]["underutilized_instances"]: print(f" • {instance['instance_id']}: {instance['finding']} - Save ${instance['recommendation'].get('estimated_monthly_savings', 0)}/month") print(f"\nTotal Monthly Savings: ${enhanced_ec2['data']['total_monthly_savings']}") print("\nWell-Architected Framework Guidance:") wa_framework = enhanced_ec2["wellarchitected_framework"] print(f" Cost Optimization Pillar: {wa_framework['cost_optimization_pillar']}") print("\n Applicable Principles:") for principle in wa_framework["applicable_principles"]: print(f" • {principle['title']}: {principle['description']}") print("\n High Priority Recommendations:") for rec in wa_framework["implementation_priority"]["high"]: print(f" • {rec}") print("\n Service-Specific Best Practices:") for rec in wa_framework["service_specific_recommendations"][:2]: # Show first 2 print(f" • {rec['practice']} ({rec['impact']})") print(f" Implementation: {rec['implementation']}") print("\n" + "=" * 70) # Example 2: S3 Storage Optimization print("\n2. S3 Storage Optimization - Enhanced Output:") print("-" * 50) s3_result = { "status": "success", "comprehensive_s3_optimization": { "overview": { "total_potential_savings": "$2,450.75", "analyses_completed": "6/6", "buckets_analyzed": 25, "execution_time": "42.3s" }, "key_findings": [ "15 buckets using suboptimal storage classes", "Found 45 incomplete multipart uploads", "Identified $1,200 in lifecycle policy savings", "3 buckets with high request costs suitable for CloudFront" ], "top_recommendations": [ { "type": "storage_class_optimization", "bucket": "analytics-data-lake", "finding": "Standard storage for infrequently accessed data", "recommendation": "Transition to Standard-IA after 30 days", "potential_savings": "$850.25/month", "priority": "High" }, { "type": "lifecycle_policy", "bucket": "backup-archives", "finding": "No lifecycle policy for old backups", "recommendation": "Archive to Glacier Deep Archive after 90 days", "potential_savings": "$650.50/month", "priority": "High" } ] } } enhanced_s3 = add_documentation_links(s3_result, "s3", "storage_optimization") print("Key Findings:") for finding in enhanced_s3["comprehensive_s3_optimization"]["key_findings"]: print(f" • {finding}") print(f"\nTotal Potential Savings: {enhanced_s3['comprehensive_s3_optimization']['overview']['total_potential_savings']}") print("\nTop Recommendations:") for rec in enhanced_s3["comprehensive_s3_optimization"]["top_recommendations"]: print(f" • {rec['bucket']}: {rec['recommendation']} - {rec['potential_savings']}") print("\nWell-Architected Framework Guidance:") wa_s3 = enhanced_s3["wellarchitected_framework"] print(" High Priority Actions:") for action in wa_s3["implementation_priority"]["high"]: print(f" • {action}") print(" Medium Priority Actions:") for action in wa_s3["implementation_priority"]["medium"][:2]: # Show first 2 print(f" • {action}") print("\n" + "=" * 70) # Example 3: Multi-Service Comprehensive Analysis print("\n3. Multi-Service Comprehensive Analysis - Enhanced Output:") print("-" * 50) comprehensive_result = { "status": "success", "comprehensive_analysis": { "overview": { "total_monthly_cost": "$8,450.25", "total_potential_savings": "$2,180.75", "savings_percentage": "25.8%", "services_analyzed": ["EC2", "EBS", "RDS", "Lambda", "S3"] }, "service_breakdown": { "ec2": {"current_cost": 3200, "potential_savings": 640, "optimization_opportunities": 12}, "ebs": {"current_cost": 850, "potential_savings": 180, "optimization_opportunities": 8}, "rds": {"current_cost": 2100, "potential_savings": 420, "optimization_opportunities": 3}, "lambda": {"current_cost": 150, "potential_savings": 45, "optimization_opportunities": 15}, "s3": {"current_cost": 2150, "potential_savings": 895, "optimization_opportunities": 22} }, "top_opportunities": [ {"service": "S3", "type": "Storage Class Optimization", "savings": 895, "effort": "Low"}, {"service": "EC2", "type": "Right-sizing", "savings": 640, "effort": "Medium"}, {"service": "RDS", "type": "Reserved Instances", "savings": 420, "effort": "Low"} ] } } enhanced_comprehensive = add_documentation_links(comprehensive_result, None, "comprehensive") print("Cost Overview:") overview = enhanced_comprehensive["comprehensive_analysis"]["overview"] print(f" • Current Monthly Cost: ${overview['total_monthly_cost']}") print(f" • Potential Savings: ${overview['total_potential_savings']} ({overview['savings_percentage']})") print("\nTop Optimization Opportunities:") for opp in enhanced_comprehensive["comprehensive_analysis"]["top_opportunities"]: print(f" • {opp['service']} - {opp['type']}: ${opp['savings']}/month ({opp['effort']} effort)") print("\nWell-Architected Framework Principles:") wa_comp = enhanced_comprehensive["wellarchitected_framework"] for principle in wa_comp["principles"][:3]: # Show first 3 print(f" • {principle['title']}") print(f" {principle['description']}") print(f" Key practices: {', '.join(principle['best_practices'][:2])}") print() print("=" * 70) print("\nEnhanced Features Summary:") print("✓ Documentation links to AWS best practices") print("✓ Well-Architected Framework Cost Optimization pillar mapping") print("✓ Service-specific implementation guidance") print("✓ Impact assessment and priority ranking") print("✓ Principle-based recommendations") print("✓ Actionable next steps with implementation details") if __name__ == "__main__": show_enhanced_examples()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aws-samples/sample-cfm-tips-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server