Skip to main content
Glama

Azure AI MCP Server

A mission-critical Model Context Protocol (MCP) server providing comprehensive Azure AI services integration with enterprise-grade reliability, observability, and chaos engineering capabilities.

πŸš€ Features

Core Azure AI Services

  • Azure OpenAI: Chat completions, embeddings, and text generation

  • Cognitive Services Text Analytics: Sentiment analysis, entity recognition, key phrase extraction

  • Computer Vision: Image analysis, object detection, OCR

  • Face API: Face detection, recognition, and analysis

  • Azure Storage: Blob storage integration for data persistence

Mission-Critical Capabilities

  • High Availability: Multi-region deployment with automatic failover

  • Observability: Comprehensive logging, metrics, and distributed tracing

  • Security: Azure AD integration, API key management, and encryption at rest/transit

  • Rate Limiting: Intelligent throttling and backpressure handling

  • Retry Logic: Exponential backoff with circuit breaker patterns

  • Chaos Engineering: Built-in chaos testing with Azure Chaos Studio

DevOps & CI/CD

  • Infrastructure as Code: Terraform modules for all environments

  • Multi-Environment: Integration, E2E, and Production pipelines

  • Container Support: Docker containerization with health checks

  • Monitoring: Azure Monitor, Application Insights integration

  • Security Scanning: Automated vulnerability assessments

Related MCP server: Azure AI Agent Service MCP Server

πŸ“‹ Prerequisites

  • Node.js 18+

  • Azure subscription with appropriate permissions

  • Azure CLI installed and configured

  • Terraform 1.5+

  • Docker (optional, for containerized deployment)

πŸ”§ Installation

1. Clone and Setup

git clone https://github.com/caiotk/nexguideai-azure-ai-mcp-server.git cd azure-ai-mcp-server npm install

2. Environment Configuration

Copy the environment template and configure your Azure credentials:

cp .env.example .env

Required environment variables:

# Azure OpenAI AZURE_OPENAI_ENDPOINT=https://your-openai.openai.azure.com/ AZURE_OPENAI_API_KEY=your-api-key # Azure Cognitive Services AZURE_COGNITIVE_SERVICES_ENDPOINT=https://your-region.api.cognitive.microsoft.com/ AZURE_COGNITIVE_SERVICES_KEY=your-key # Azure Storage AZURE_STORAGE_CONNECTION_STRING=your-connection-string # Azure AD (for production) AZURE_TENANT_ID=your-tenant-id AZURE_CLIENT_ID=your-client-id AZURE_CLIENT_SECRET=your-client-secret # Monitoring AZURE_APPLICATION_INSIGHTS_CONNECTION_STRING=your-connection-string LOG_LEVEL=info

3. Build and Run

npm run build npm start

πŸ—οΈ Architecture

System Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ MCP Client │────│ Azure AI MCP │────│ Azure Services β”‚ β”‚ β”‚ β”‚ Server β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Observability β”‚ β”‚ & Monitoring β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Component Architecture

  • API Layer: MCP protocol implementation with request validation

  • Service Layer: Azure AI service integrations with retry logic

  • Infrastructure Layer: Terraform modules for cloud resources

  • Observability Layer: Logging, metrics, and distributed tracing

πŸ”„ CI/CD Pipeline

Environments

  1. Integration (INT): Feature testing and integration validation

  2. End-to-End (E2E): Full system testing with chaos engineering

  3. Production (PROD): Live environment with blue-green deployment

Pipeline Stages

Build β†’ Test β†’ Security Scan β†’ Deploy INT β†’ E2E Tests β†’ Chaos Tests β†’ Deploy PROD

Deployment Strategy

  • Blue-Green Deployment: Zero-downtime deployments

  • Canary Releases: Gradual traffic shifting for risk mitigation

  • Automated Rollback: Automatic rollback on health check failures

πŸ§ͺ Testing Strategy

Test Pyramid

  • Unit Tests: Individual component testing (Jest)

  • Integration Tests: Service integration validation

  • E2E Tests: Full workflow testing

  • Chaos Tests: Resilience and failure scenario testing

Chaos Engineering

Integrated with Azure Chaos Studio for:

  • Service Disruption: Simulated Azure service outages

  • Network Latency: Increased response times

  • Resource Exhaustion: CPU/Memory pressure testing

  • Dependency Failures: External service failures

πŸ“Š Monitoring & Observability

Metrics

  • Performance: Response times, throughput, error rates

  • Business: API usage, feature adoption, cost optimization

  • Infrastructure: Resource utilization, availability

Logging

  • Structured Logging: JSON format with correlation IDs

  • Log Levels: ERROR, WARN, INFO, DEBUG

  • Centralized: Azure Log Analytics integration

Alerting

  • SLA Monitoring: 99.9% availability target

  • Error Rate Thresholds: >1% error rate alerts

  • Performance Degradation: Response time anomalies

πŸ”’ Security

Authentication & Authorization

  • Azure AD Integration: Enterprise identity management

  • API Key Management: Secure key rotation and storage

  • RBAC: Role-based access control

Data Protection

  • Encryption at Rest: Azure Storage encryption

  • Encryption in Transit: TLS 1.3 for all communications

  • Data Residency: Configurable data location compliance

Security Scanning

  • Dependency Scanning: Automated vulnerability detection

  • SAST: Static application security testing

  • Container Scanning: Docker image vulnerability assessment

πŸš€ Deployment

Local Development

npm run dev

Docker Deployment

npm run docker:build npm run docker:run

Terraform Deployment

cd terraform/environments/prod terraform init terraform plan terraform apply

πŸ“ˆ Performance

Benchmarks

  • Latency: P95 < 500ms for chat completions

  • Throughput: 1000+ requests/minute sustained

  • Availability: 99.9% uptime SLA

Optimization

  • Connection Pooling: Efficient Azure service connections

  • Caching: Intelligent response caching strategies

  • Rate Limiting: Adaptive throttling based on service limits

🀝 Contributing

  1. Fork the repository

  2. Create a feature branch (git checkout -b feature/amazing-feature)

  3. Commit your changes (git commit -m 'Add amazing feature')

  4. Push to the branch (git push origin feature/amazing-feature)

  5. Open a Pull Request

Development Guidelines

  • Follow TypeScript strict mode

  • Maintain 90%+ test coverage

  • Use conventional commits

  • Update documentation for new features

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

πŸ—ΊοΈ Roadmap

  • Multi-model support (GPT-4, Claude, Gemini)

  • Advanced caching strategies

  • GraphQL API support

  • Kubernetes deployment manifests

  • Advanced chaos engineering scenarios

  • Cost optimization recommendations


Built with ❀️ by NexGuide AI

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/caiotk/nexguideai-azure-ai-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server