Skip to main content
Glama

Aerospace MCP

by cheesejaguar

Aerospace MCP - Flight Planning API & MCP Server

A comprehensive aerospace research and flight planning service providing both HTTP API and Model Context Protocol (MCP) integration. Built with FastMCP for streamlined MCP server development. Features intelligent airport resolution, great-circle route calculation, aircraft performance estimation, atmospheric modeling, coordinate frame transformations, aerodynamic analysis, propeller performance modeling, rocket trajectory optimization, orbital mechanics calculations, and spacecraft trajectory planning for aerospace operations.

⚠️ SAFETY DISCLAIMER

THIS SOFTWARE IS FOR EDUCATIONAL, RESEARCH, AND DEVELOPMENT PURPOSES ONLY

  • NOT FOR REAL NAVIGATION: Do not use for actual flight planning or navigation
  • NOT CERTIFIED: This system is not certified by any aviation authority
  • ESTIMATES ONLY: Performance calculations are theoretical estimates
  • NO WEATHER DATA: Does not account for weather, NOTAMs, or airspace restrictions
  • NO LIABILITY: Authors assume no responsibility for any consequences of use

For real flight planning, always use certified aviation software and consult official sources including NOTAMs, weather reports, and air traffic control.

🚀 Quick Start

# Install UV (fast Python package manager) curl -LsSf https://astral.sh/uv/install.sh | sh # Clone and setup git clone https://github.com/username/aerospace-mcp.git cd aerospace-mcp uv venv && source .venv/bin/activate # Windows: .venv\Scripts\activate uv sync # Copy env and configure (optional but recommended) cp .env.example .env # Edit .env as needed (host/port/log level, optional LLM tools) # Run HTTP server (package entrypoint) uv run aerospace-mcp-http # Alternatively (developer style) uvicorn main:app --reload --host 0.0.0.0 --port 8080 # Test the API curl "http://localhost:8080/health"

Option 2: Docker

git clone https://github.com/username/aerospace-mcp.git cd aerospace-mcp docker build -t aerospace-mcp . docker run -p 8080:8080 aerospace-mcp # Test the API curl "http://localhost:8080/health"

Option 3: MCP Client (Claude Desktop)

Add to your Claude Desktop configuration:

{ "mcpServers": { "aerospace-mcp": { "command": "uv", "args": ["run", "aerospace-mcp"], "cwd": "/path/to/aerospace-mcp", "env": { "LLM_TOOLS_ENABLED": "true", "OPENAI_API_KEY": "your-openai-api-key-here" } } } }

Note: The env section is optional and only needed if you want to enable the AI-powered agent tools for enhanced user experience.

MCP via CLI

# Start the MCP server (stdio) uv run aerospace-mcp # Start in SSE mode (optional) uv run aerospace-mcp sse 0.0.0.0 8001

📋 Table of Contents

✨ Features

Core Capabilities

  • Airport Resolution: Intelligent city-to-airport mapping with 28,000+ airports worldwide
  • Route Planning: Great-circle distance calculation with geodesic precision
  • Performance Estimation: Aircraft-specific fuel and time calculations via OpenAP
  • Atmospheric Modeling: ISA atmosphere profiles with optional enhanced precision
  • Coordinate Transformations: ECEF, ECI, geodetic frame conversions for aerospace analysis
  • Multiple Interfaces: HTTP REST API and Model Context Protocol (MCP) support
  • Real-time Processing: Sub-second response times for flight planning requests

Space & Orbital Mechanics Capabilities

  • 🛰️ Orbital Elements & State Vectors: Convert between Keplerian elements and Cartesian state vectors
  • 🌍 Orbit Propagation: Numerical integration with J2 perturbations using RK4 method
  • 🗺️ Ground Track Computation: Calculate satellite ground tracks for mission planning
  • 🔄 Hohmann Transfers: Calculate optimal two-impulse orbital transfers
  • 🤝 Orbital Rendezvous: Plan multi-maneuver rendezvous sequences
  • 🎯 Trajectory Optimization: Genetic algorithms and particle swarm optimization
  • 📊 Uncertainty Analysis: Monte Carlo sampling for trajectory robustness assessment
  • 🚀 Lambert Problem: Two-body trajectory determination for given time-of-flight

Supported Operations

  • ✅ Airport search by city name or IATA code
  • ✅ Flight route planning with polyline generation
  • ✅ Aircraft performance estimation (190+ aircraft types)
  • ✅ Fuel consumption and flight time calculations
  • ✅ Great-circle distance calculations
  • ✅ Multi-leg journey planning
  • ✅ Aircraft comparison analysis
  • ✅ Atmospheric profile calculation (ISA standard atmosphere)
  • ✅ Wind profile modeling (logarithmic/power law)
  • ✅ Coordinate frame transformations (ECEF, ECI, geodetic)
  • ✅ Wing aerodynamics analysis (VLM, lifting line theory)
  • ✅ Airfoil polar generation and database access
  • ✅ Aircraft stability derivatives calculation
  • ✅ Propeller performance analysis (BEMT)
  • ✅ UAV energy optimization and endurance estimation
  • ✅ Motor-propeller matching analysis
  • ✅ 3DOF rocket trajectory simulation with atmosphere integration
  • ✅ Rocket sizing estimation for mission planning
  • ✅ Launch angle optimization for maximum performance
  • ✅ Thrust profile optimization using gradient descent
  • ✅ Trajectory sensitivity analysis for design studies
  • ✅ System capability discovery and status reporting
  • Orbital mechanics calculations (Keplerian elements, state vectors, propagation)
  • Ground track computation for satellite tracking and visualization
  • Hohmann transfer planning for orbital maneuvers and mission design
  • Orbital rendezvous planning for spacecraft proximity operations
  • Trajectory optimization using genetic algorithms and particle swarm optimization
  • Monte Carlo uncertainty analysis for trajectory robustness assessment
  • Lambert problem solving for two-body trajectory determination
  • Porkchop plot generation for interplanetary transfer opportunity analysis
  • Optional SPICE integration with fallback to simplified ephemeris models

Technical Features

  • 🚀 Fast: In-memory airport database for microsecond lookups
  • 🔧 Flexible: Pluggable backend system (currently OpenAP)
  • 📊 Accurate: Uses WGS84 geodesic calculations
  • 🌐 Standards: Follows ICAO aircraft codes and IATA airport codes
  • 🔒 Reliable: Comprehensive error handling and graceful degradation
  • 📚 Well-documented: Complete API documentation with examples

💾 Installation

System Requirements

  • Python: 3.11+ (3.12+ recommended for best performance)
  • Memory: 512MB RAM minimum (1GB+ recommended)
  • Storage: 200MB free space
  • Network: Internet connection for initial setup

UV is the fastest Python package manager and provides excellent dependency resolution:

# Install UV curl -LsSf https://astral.sh/uv/install.sh | sh # Linux/macOS # Or: powershell -c "irm https://astral.sh/uv/install.ps1 | iex" # Windows # Clone repository git clone https://github.com/username/aerospace-mcp.git cd aerospace-mcp # Create virtual environment uv venv source .venv/bin/activate # Linux/macOS # .venv\Scripts\activate # Windows # Install dependencies uv add fastapi uvicorn[standard] airportsdata geographiclib pydantic python-dotenv uv add openap # Optional: for performance estimates uv add mcp # Optional: for MCP server functionality # Install optional aerospace analysis dependencies uv add --optional-dependencies atmosphere # Ambiance for enhanced ISA uv add --optional-dependencies space # Astropy for coordinate frames uv add --optional-dependencies all # All optional dependencies # Install development dependencies (optional) uv add --dev pytest httpx black isort mypy pre-commit # Verify installation python -c "import main; print('✅ Installation successful')"

Method 2: Pip (Traditional)

# Clone repository git clone https://github.com/username/aerospace-mcp.git cd aerospace-mcp # Create virtual environment python -m venv .venv source .venv/bin/activate # Linux/macOS # .venv\Scripts\activate # Windows # Upgrade pip pip install --upgrade pip # Install core dependencies pip install fastapi uvicorn[standard] airportsdata geographiclib pydantic python-dotenv # Install optional dependencies pip install openap # For performance estimates pip install mcp # For MCP server pip install python-dotenv # For loading .env in local/dev # Install from pyproject.toml pip install -e . # Verify installation python -c "import main; print('✅ Installation successful')"

Method 3: Docker

# Clone repository git clone https://github.com/username/aerospace-mcp.git cd aerospace-mcp # Build image docker build -t aerospace-mcp . # Run container docker run -d -p 8080:8080 --name aerospace-mcp aerospace-mcp # Health check curl http://localhost:8080/health # View logs docker logs aerospace-mcp # Stop container docker stop aerospace-mcp

Method 4: Conda/Mamba

# Create conda environment conda create -n aerospace-mcp python=3.11 conda activate aerospace-mcp # Clone repository git clone https://github.com/username/aerospace-mcp.git cd aerospace-mcp # Install dependencies conda install fastapi uvicorn pydantic pip install airportsdata geographiclib openap mcp # Verify installation python -c "import main; print('✅ Installation successful')"

Troubleshooting Installation

Common Issues

OpenAP Installation Problems:

# Try these alternatives if OpenAP fails to install pip install openap --no-cache-dir pip install openap --force-reinstall # Or install without OpenAP (performance estimates will be unavailable)

GeographicLib Issues:

# Install system dependencies (Ubuntu/Debian) sudo apt-get install libproj-dev proj-data proj-bin # Install system dependencies (macOS) brew install proj # Install system dependencies (Windows) # Download from: https://proj.org/download.html

Import Errors:

# Verify your Python environment python --version # Should be 3.11+ pip list | grep -E "(fastapi|openap|airportsdata)" # Test individual imports python -c "import fastapi; print('FastAPI OK')" python -c "import airportsdata; print('AirportsData OK')" python -c "import openap; print('OpenAP OK')" || echo "OpenAP not available (optional)"

🎯 Usage Examples

HTTP API Examples

Basic Flight Planning
# Plan a simple flight curl -X POST "http://localhost:8080/plan" \ -H "Content-Type: application/json" \ -d '{ "depart_city": "San Francisco", "arrive_city": "New York", "ac_type": "A320", "cruise_alt_ft": 37000, "backend": "openap" }'
# Find airports by city curl "http://localhost:8080/airports/by_city?city=Tokyo" # Filter by country curl "http://localhost:8080/airports/by_city?city=London&country=GB" # Multiple results curl "http://localhost:8080/airports/by_city?city=Paris"
Advanced Flight Planning
# Specify exact airports and aircraft mass curl -X POST "http://localhost:8080/plan" \ -H "Content-Type: application/json" \ -d '{ "depart_city": "Los Angeles", "arrive_city": "Tokyo", "prefer_depart_iata": "LAX", "prefer_arrive_iata": "NRT", "ac_type": "B777", "cruise_alt_ft": 39000, "mass_kg": 220000, "route_step_km": 100.0, "backend": "openap" }'

Python Client Examples

Simple Client
import requests import json class AerospaceClient: def __init__(self, base_url="http://localhost:8080"): self.base_url = base_url def plan_flight(self, departure, arrival, aircraft="A320", altitude=35000): """Plan a flight between two cities.""" response = requests.post(f"{self.base_url}/plan", json={ "depart_city": departure, "arrive_city": arrival, "ac_type": aircraft, "cruise_alt_ft": altitude, "backend": "openap" }) return response.json() def find_airports(self, city, country=None): """Find airports in a city.""" params = {"city": city} if country: params["country"] = country response = requests.get(f"{self.base_url}/airports/by_city", params=params) return response.json() # Usage client = AerospaceClient() # Find airports airports = client.find_airports("Sydney", "AU") print(f"Sydney has {len(airports)} airports") # Plan flight plan = client.plan_flight("Sydney", "Melbourne", "B737") print(f"Flight distance: {plan['distance_nm']:.0f} NM") print(f"Flight time: {plan['estimates']['block']['time_min']:.0f} minutes")
Batch Processing
import asyncio import aiohttp from typing import List, Dict async def plan_multiple_flights(flights: List[Dict]) -> List[Dict]: """Plan multiple flights concurrently.""" async with aiohttp.ClientSession() as session: tasks = [] for flight in flights: task = plan_single_flight(session, flight) tasks.append(task) results = await asyncio.gather(*tasks, return_exceptions=True) return results async def plan_single_flight(session, flight_data): """Plan a single flight.""" async with session.post( "http://localhost:8080/plan", json=flight_data ) as response: return await response.json() # Example usage flights_to_plan = [ {"depart_city": "New York", "arrive_city": "London", "ac_type": "A330"}, {"depart_city": "London", "arrive_city": "Dubai", "ac_type": "B777"}, {"depart_city": "Dubai", "arrive_city": "Singapore", "ac_type": "A350"} ] # Run the batch planning results = asyncio.run(plan_multiple_flights(flights_to_plan)) for i, result in enumerate(results): if not isinstance(result, Exception): print(f"Flight {i+1}: {result['distance_nm']:.0f} NM, {result['estimates']['block']['time_min']:.0f} min")

Orbital Mechanics Examples

Python Examples
import requests class OrbitalMechanicsClient: def __init__(self, base_url="http://localhost:8080"): self.base_url = base_url def plan_hohmann_transfer(self, r1_km, r2_km): """Calculate Hohmann transfer between two circular orbits.""" response = requests.post(f"{self.base_url}/hohmann_transfer", json={ "r1_m": r1_km * 1000, # Convert to meters "r2_m": r2_km * 1000 }) return response.json() def propagate_satellite_orbit(self, elements, duration_hours): """Propagate satellite orbit with J2 perturbations.""" response = requests.post(f"{self.base_url}/propagate_orbit_j2", json={ "initial_state": elements, "time_span_s": duration_hours * 3600, "time_step_s": 300 # 5-minute steps }) return response.json() # Example usage client = OrbitalMechanicsClient() # Plan a GTO to GEO transfer gto_alt = 200 # km (perigee) geo_alt = 35786 # km (GEO altitude) transfer = client.plan_hohmann_transfer( 6378 + gto_alt, # Earth radius + altitude 6378 + geo_alt ) print(f"Transfer Delta-V: {transfer['delta_v_total_ms']/1000:.2f} km/s") print(f"Transfer Time: {transfer['transfer_time_h']:.1f} hours") # Propagate ISS orbit for one day iss_elements = { "semi_major_axis_m": 6793000, # ~415 km altitude "eccentricity": 0.0001, "inclination_deg": 51.6, "raan_deg": 0.0, "arg_periapsis_deg": 0.0, "true_anomaly_deg": 0.0, "epoch_utc": "2024-01-01T12:00:00" } orbit_states = client.propagate_satellite_orbit(iss_elements, 24) print(f"Propagated {len(orbit_states)} orbital states over 24 hours")
Trajectory Optimization Example
# Optimize a lunar transfer trajectory def optimize_lunar_transfer(): initial_trajectory = [ { "time_s": 0, "position_m": [6700000, 0, 0], # LEO "velocity_ms": [0, 7500, 0] }, { "time_s": 86400 * 3, # 3 days "position_m": [384400000, 0, 0], # Moon distance "velocity_ms": [0, 1000, 0] } ] response = requests.post("http://localhost:8080/genetic_algorithm_optimization", json={ "initial_trajectory": initial_trajectory, "objective": "minimize_delta_v", "constraints": { "max_thrust_n": 50000, "max_acceleration_ms2": 10 } }) result = response.json() print(f"Optimized Delta-V: {result['total_delta_v_ms']/1000:.2f} km/s") print(f"Flight Time: {result['flight_time_s']/86400:.1f} days") return result optimized_trajectory = optimize_lunar_transfer() # Generate porkchop plot for Mars mission planning def plan_mars_mission(): response = requests.post("http://localhost:8080/porkchop_plot_analysis", json={ "departure_body": "Earth", "arrival_body": "Mars", "min_tof_days": 200, "max_tof_days": 300 }) analysis = response.json() if analysis["summary_statistics"]["feasible_transfers"] > 0: optimal = analysis["optimal_transfer"] print(f"Optimal Mars Transfer:") print(f" Launch: {optimal['departure_date']}") print(f" Arrival: {optimal['arrival_date']}") print(f" C3: {optimal['c3_km2_s2']:.2f} km²/s²") print(f" Flight Time: {optimal['time_of_flight_days']:.0f} days") else: print("No feasible transfers found in date range") plan_mars_mission()

JavaScript/TypeScript Examples

interface FlightPlan { depart_city: string; arrive_city: string; ac_type: string; cruise_alt_ft?: number; backend: "openap"; } class AerospaceAPI { constructor(private baseUrl: string = "http://localhost:8080") {} async planFlight(request: FlightPlan) { const response = await fetch(`${this.baseUrl}/plan`, { method: "POST", headers: { "Content-Type": "application/json" }, body: JSON.stringify(request), }); if (!response.ok) { throw new Error(`API Error: ${response.statusText}`); } return await response.json(); } async findAirports(city: string, country?: string) { const params = new URLSearchParams({ city }); if (country) params.append("country", country); const response = await fetch(`${this.baseUrl}/airports/by_city?${params}`); return await response.json(); } } // Usage const api = new AerospaceAPI(); try { const plan = await api.planFlight({ depart_city: "Boston", arrive_city: "Seattle", ac_type: "B737", cruise_alt_ft: 36000, backend: "openap" }); console.log(`Flight planned: ${plan.distance_nm} NM`); console.log(`Estimated time: ${plan.estimates.block.time_min} minutes`); } catch (error) { console.error("Flight planning failed:", error); }

🏗️ Architecture

System Overview

Key Components

  1. FastAPI Application (main.py)
    • RESTful endpoints for HTTP clients
    • Auto-generated OpenAPI documentation
    • Request/response validation with Pydantic
  2. MCP Server (aerospace_mcp/server.py)
    • Model Context Protocol implementation
    • Tool-based interface for AI assistants
    • Async request handling
  3. Core Services
    • Airport Resolution: City → Airport mapping with intelligent selection
    • Route Calculation: Great-circle paths with polyline generation
    • Performance Estimation: OpenAP-based fuel and time calculations
  4. Data Layer
    • In-memory Airport Database: 28,000+ airports loaded at startup
    • OpenAP Integration: Aircraft performance models
    • GeographicLib: Precise geodesic calculations

Design Principles

  • Performance First: In-memory data structures for sub-millisecond lookups
  • Graceful Degradation: Works without optional dependencies
  • Type Safety: Full type hints and Pydantic validation
  • Extensible: Plugin architecture for new backends
  • Standards Compliant: ICAO, IATA, and OpenAP standards

🚀 FastMCP Migration

This project has been migrated from the traditional MCP SDK to FastMCP, providing significant improvements in developer experience and code maintainability.

What is FastMCP?

FastMCP is a high-level, Pythonic framework for building Model Context Protocol servers. It dramatically reduces boilerplate code while maintaining full MCP compatibility.

Migration Benefits

70% Less Code: Tool definitions went from verbose JSON schemas to simple Python decorators ✅ Better Type Safety: Automatic schema generation from type hints ✅ Cleaner Architecture: Modular tool organization across logical domains ✅ Improved Maintainability: Pythonic code that's easier to read and extend ✅ Full Compatibility: Same MCP protocol, works with all existing clients

Before vs After

Before (Traditional MCP SDK):

Tool( name="search_airports", description="Search for airports by IATA code or city name", inputSchema={ "type": "object", "properties": { "query": {"type": "string", "description": "IATA code or city name"}, "country": {"type": "string", "description": "Optional country filter"}, "query_type": {"type": "string", "enum": ["iata", "city", "auto"]} }, "required": ["query"] } ) @server.call_tool() async def handle_call_tool(name: str, arguments: dict): if name == "search_airports": return await _handle_search_airports(arguments) # ... 30+ more tool handlers

⚙️ Configuration (.env)

Both the HTTP server and MCP servers automatically load environment variables from a local .env (via python-dotenv).

  • AEROSPACE_MCP_MODE: http or mcp (Docker entrypoint switch)
  • AEROSPACE_MCP_HOST: Bind host for HTTP (default 0.0.0.0)
  • AEROSPACE_MCP_PORT: Port for HTTP (default 8080)
  • AEROSPACE_MCP_LOG_LEVEL: debug|info|warning|error (default info)
  • AEROSPACE_MCP_ENV: development|production (controls reload)
  • LLM_TOOLS_ENABLED: true|false to enable AI agent tools (default false)
  • OPENAI_API_KEY: Required if LLM tools are enabled

Example .env:

AEROSPACE_MCP_MODE=http AEROSPACE_MCP_HOST=0.0.0.0 AEROSPACE_MCP_PORT=8080 AEROSPACE_MCP_LOG_LEVEL=debug LLM_TOOLS_ENABLED=false # OPENAI_API_KEY=sk-...

After (FastMCP):

@mcp.tool def search_airports( query: str, country: str | None = None, query_type: Literal["iata", "city", "auto"] = "auto" ) -> str: """Search for airports by IATA code or city name.""" # Implementation here

Architecture Improvements

The FastMCP refactoring introduced a modular architecture with tools organized by domain:

  • tools/core.py - Core flight planning (search, plan, distance, performance)
  • tools/atmosphere.py - Atmospheric modeling and wind analysis
  • tools/frames.py - Coordinate frame transformations
  • tools/aerodynamics.py - Wing analysis and airfoil polars
  • tools/propellers.py - Propeller BEMT and UAV energy analysis
  • tools/rockets.py - Rocket trajectory and sizing
  • tools/orbits.py - Orbital mechanics and propagation
  • tools/optimization.py - Trajectory optimization algorithms

Compatibility Notes

  • Entry Point: Now uses aerospace_mcp.fastmcp_server:run
  • Dependencies: Includes fastmcp>=2.11.3 instead of raw mcp
  • Server Name: Still aerospace-mcp for client compatibility
  • All Tools: All 30+ tools maintain exact same names and parameters

⚡ Performance

Benchmarks

OperationResponse TimeThroughputMemory Usage
Health Check< 1ms10,000+ req/sec~5MB
Airport Search1-5ms1,000+ req/sec~50MB
Flight Planning200-500ms5-10 req/sec~100MB
Distance Calc10-50ms100+ req/sec~50MB

Optimization Tips

  1. Route Resolution: Use larger route_step_km values for faster processing
  2. Caching: Implement client-side caching for repeated requests
  3. Batch Processing: Use async clients for multiple concurrent requests
  4. Memory: Increase available RAM for better OpenAP performance

Scaling Considerations

  • Horizontal Scaling: Stateless design allows multiple instances
  • Load Balancing: Standard HTTP load balancers work well
  • Database: Consider external database for airport data at scale
  • Caching: Add Redis for shared cache across instances

📖 API Documentation

Interactive Documentation

When running the server, comprehensive API documentation is available at:

  • Swagger UI: http://localhost:8080/docs
  • ReDoc: http://localhost:8080/redoc
  • OpenAPI Schema: http://localhost:8080/openapi.json

Core Endpoints

GET /health

Health check and system status.

Response:

{ "status": "ok", "openap": true, "airports_count": 28756 }
GET /airports/by_city

Search airports by city name.

Parameters:

  • city (required): City name to search
  • country (optional): ISO country code filter

Example: GET /airports/by_city?city=London&country=GB

POST /plan

Generate complete flight plan.

Request Body:

{ "depart_city": "San Francisco", "arrive_city": "New York", "ac_type": "A320", "cruise_alt_ft": 37000, "mass_kg": 65000, "route_step_km": 25.0, "backend": "openap" }

Response: Complete flight plan with route polyline and performance estimates.

Error Handling

All endpoints return standard HTTP status codes:

  • 200: Success
  • 400: Bad Request (invalid parameters)
  • 404: Not Found (airport/city not found)
  • 501: Not Implemented (backend unavailable)

Error responses include detailed messages:

{ "detail": "departure: IATA 'XYZ' not found." }

🤖 MCP Integration

Supported MCP Clients

  • Claude Desktop: Native integration
  • VS Code Continue: Plugin support
  • Custom Clients: Standard MCP protocol

Available Tools

ToolDescriptionParameters
search_airportsFind airports by IATA or cityquery, country, query_type
plan_flightComplete flight planningdeparture, arrival, aircraft, route_options
calculate_distanceGreat-circle distanceorigin, destination, step_km
get_aircraft_performancePerformance estimatesaircraft_type, distance_km, cruise_altitude
get_atmosphere_profileISA atmosphere conditionsaltitudes_m, model_type
wind_model_simpleWind profile calculationaltitudes_m, surface_wind_mps, model
transform_framesCoordinate transformationsxyz, from_frame, to_frame, epoch_iso
geodetic_to_ecefLat/lon to ECEF conversionlatitude_deg, longitude_deg, altitude_m
ecef_to_geodeticECEF to lat/lon conversionx, y, z
wing_vlm_analysisWing aerodynamics analysis (VLM)geometry, alpha_deg_list, mach
airfoil_polar_analysisAirfoil polar generationairfoil_name, alpha_deg_list, reynolds, mach
calculate_stability_derivativesStability derivatives calculationgeometry, alpha_deg, mach
propeller_bemt_analysisPropeller performance (BEMT)geometry, rpm_list, velocity_ms, altitude_m
uav_energy_estimateUAV endurance and energy analysisuav_config, battery_config, mission_profile
get_airfoil_databaseAvailable airfoil coefficientsNone
get_propeller_databaseAvailable propeller dataNone
rocket_3dof_trajectory3DOF rocket trajectory simulationgeometry, dt_s, max_time_s, launch_angle_deg
estimate_rocket_sizingRocket sizing for mission requirementstarget_altitude_m, payload_mass_kg, propellant_type
optimize_launch_angleLaunch angle optimizationgeometry, objective, angle_bounds
optimize_thrust_profileThrust profile optimizationgeometry, burn_time_s, total_impulse_target, n_segments, objective
trajectory_sensitivity_analysisParameter sensitivity analysisbase_geometry, parameter_variations, objective
get_system_statusSystem health and capabilitiesNone
elements_to_state_vectorConvert orbital elements to state vectorelements
state_vector_to_elementsConvert state vector to orbital elementsstate_vector
propagate_orbit_j2Propagate orbit with J2 perturbationsinitial_state, time_span_s, time_step_s
calculate_ground_trackCalculate satellite ground trackorbit_states, time_step_s
hohmann_transferCalculate Hohmann transfer orbitr1_m, r2_m
orbital_rendezvous_planningPlan orbital rendezvous maneuverschaser_elements, target_elements
genetic_algorithm_optimizationTrajectory optimization using GAinitial_trajectory, objective, constraints
particle_swarm_optimizationTrajectory optimization using PSOinitial_trajectory, objective, constraints
monte_carlo_uncertainty_analysisMonte Carlo trajectory uncertainty analysistrajectory, uncertainty_params, num_samples
porkchop_plot_analysisGenerate porkchop plot for interplanetary transfersdeparture_body, arrival_body, departure_dates, arrival_dates, min_tof_days, max_tof_days

Claude Desktop Setup

  1. Open Claude Desktop Settings
  2. Add server configuration:
{ "mcpServers": { "aerospace-mcp": { "command": "python", "args": ["-m", "aerospace_mcp.server"], "cwd": "/path/to/aerospace-mcp", "env": { "PYTHONPATH": "/path/to/aerospace-mcp" } } } }
  1. Restart Claude Desktop
  2. Test with: "Search for airports in Tokyo"

VS Code Continue Setup

Add to your config.json:

{ "mcpServers": [ { "name": "aerospace-mcp", "command": "python", "args": ["-m", "aerospace_mcp.server"], "workingDirectory": "/path/to/aerospace-mcp" } ] }

🛠️ Development

Development Setup

# Clone and setup git clone https://github.com/username/aerospace-mcp.git cd aerospace-mcp # Create development environment uv venv source .venv/bin/activate uv add --dev pytest httpx black isort mypy pre-commit # Install pre-commit hooks pre-commit install # Run development server uvicorn main:app --reload --log-level debug

Testing

# Run all tests pytest # Run with coverage pytest --cov=. --cov-report=html # Run specific test file pytest tests/test_main.py -v # Performance testing pytest tests/test_performance.py -v

Code Quality

# Format code black . && isort . # Type checking mypy main.py aerospace_mcp/ # Linting ruff check . # Pre-commit (runs all checks) pre-commit run --all-files

Project Structure

aerospace-mcp/ ├── main.py # FastAPI application ├── aerospace_mcp/ # MCP server implementation │ ├── __init__.py │ ├── server.py # MCP server │ └── core.py # Shared business logic ├── app/ # Alternative FastAPI structure │ ├── __init__.py │ └── main.py ├── tests/ # Test suite │ ├── conftest.py │ ├── test_main.py │ ├── test_airports.py │ ├── test_plan.py │ └── test_mcp.py ├── docs/ # Documentation │ ├── API.md │ ├── ARCHITECTURE.md │ ├── INTEGRATION.md │ ├── QUICKSTART.md │ ├── DEPLOYMENT.md │ └── MCP_INTEGRATION.md ├── pyproject.toml # Project configuration ├── requirements.txt # Dependencies ├── Dockerfile # Docker configuration ├── docker-compose.yml # Multi-service setup └── README.md # This file

🤝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for detailed guidelines.

Quick Contributing Guide

  1. Fork & Clone
    git clone https://github.com/yourusername/aerospace-mcp.git cd aerospace-mcp
  2. Setup Development Environment
    uv venv && source .venv/bin/activate uv add --dev pytest httpx black isort mypy
  3. Make Changes
    • Add features or fix bugs
    • Write tests for new functionality
    • Update documentation as needed
  4. Test & Format
    pytest black . && isort . mypy main.py
  5. Submit Pull Request
    • Clear title and description
    • Reference any related issues
    • Ensure CI/CD checks pass

Areas for Contribution

  • New Aircraft Support: Add more aircraft types to OpenAP
  • Weather Integration: Add weather data sources
  • Route Optimization: Implement waypoint optimization
  • UI/Frontend: Web interface for flight planning
  • Database Backend: PostgreSQL/MongoDB integration
  • Performance: Optimization and caching improvements

📚 Documentation

Complete Documentation

Examples Repository

Check out the examples repository for:

  • Complete client implementations
  • Integration patterns
  • Performance benchmarks
  • Real-world use cases

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

Third-Party Acknowledgments

🆘 Support & Community

Getting Help

  • GitHub Issues: Bug reports and feature requests
  • GitHub Discussions: Questions and community support
  • Documentation: Comprehensive guides in /docs
  • Examples: Code examples and tutorials

Community

  • Discord: WIP for real-time chat

Professional Support

For enterprise support, consulting, or custom development:


⭐ Star this repository if you find it useful!

Built with ❤️ for the aviation and software development communities.

Deploy Server
-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Enables flight planning and aviation operations through intelligent airport resolution, great-circle route calculation, and aircraft performance estimation. Supports 28,000+ airports worldwide and 190+ aircraft types for comprehensive flight planning via natural language.

  1. ⚠️ SAFETY DISCLAIMER
    1. 🚀 Quick Start
      1. Option 1: UV (Recommended)
      2. Option 2: Docker
      3. Option 3: MCP Client (Claude Desktop)
      4. MCP via CLI
    2. 📋 Table of Contents
      1. ✨ Features
        1. Core Capabilities
        2. Space & Orbital Mechanics Capabilities
        3. Supported Operations
        4. Technical Features
      2. 💾 Installation
        1. System Requirements
        2. Method 1: UV Package Manager (Recommended)
        3. Method 2: Pip (Traditional)
        4. Method 3: Docker
        5. Method 4: Conda/Mamba
        6. Troubleshooting Installation
      3. 🎯 Usage Examples
        1. HTTP API Examples
        2. Python Client Examples
        3. Orbital Mechanics Examples
        4. JavaScript/TypeScript Examples
      4. 🏗️ Architecture
        1. System Overview
        2. Key Components
        3. Design Principles
      5. 🚀 FastMCP Migration
        1. What is FastMCP?
        2. Migration Benefits
        3. Before vs After
      6. ⚙️ Configuration (.env)
        1. Architecture Improvements
        2. Compatibility Notes
      7. ⚡ Performance
        1. Benchmarks
        2. Optimization Tips
        3. Scaling Considerations
      8. 📖 API Documentation
        1. Interactive Documentation
        2. Core Endpoints
        3. Error Handling
      9. 🤖 MCP Integration
        1. Supported MCP Clients
        2. Available Tools
        3. Claude Desktop Setup
        4. VS Code Continue Setup
      10. 🛠️ Development
        1. Development Setup
        2. Testing
        3. Code Quality
        4. Project Structure
      11. 🤝 Contributing
        1. Quick Contributing Guide
        2. Areas for Contribution
      12. 📚 Documentation
        1. Complete Documentation
        2. Examples Repository
      13. 📄 License
        1. Third-Party Acknowledgments
      14. 🆘 Support & Community
        1. Getting Help
        2. Community
        3. Professional Support

      Related MCP Servers

      • -
        security
        F
        license
        -
        quality
        Creates travel agent-level flight plans using the fast-flights API, allowing users to search for flights and generate comprehensive travel itineraries.
        Last updated -
        5
        • Apple
      • A
        security
        F
        license
        A
        quality
        Integration platform for aviation data sources including weather, NOTAMs, airport information, and flight planning APIs, enabling comprehensive pre-flight preparation and in-flight decision support.
        Last updated -
        1
        0
        2
      • A
        security
        F
        license
        A
        quality
        Provides tools to query flight and train information including flight searches, train tickets, weather forecasts, and transfer options between different transportation modes.
        Last updated -
        9
        11
      • -
        security
        A
        license
        -
        quality
        A server that provides real-time flight information query capabilities to AI assistants, allowing them to access detailed flight statuses, airport details, and related travel information.
        Last updated -
        10
        8
        MIT License
        • Apple

      View all related MCP servers

      MCP directory API

      We provide all the information about MCP servers via our MCP API.

      curl -X GET 'https://glama.ai/api/mcp/v1/servers/cheesejaguar/aerospace-mcp'

      If you have feedback or need assistance with the MCP directory API, please join our Discord server