Skip to main content
Glama

MCP Dual-Cycle Reasoner

by cyqlelabs
MIT License
158
3

configure_detection

Set up loop detection parameters and progress metrics for AI agents to identify repetitive or non-progressing reasoning patterns, enabling intelligent recovery and task optimization.

Instructions

Configure loop detection parameters and domain-specific progress indicators

Input Schema

NameRequiredDescriptionDefault
alternating_thresholdNoThreshold for detecting alternating action patterns (0.0-1.0)
min_actions_for_detectionNoMinimum number of actions required before loop detection
progress_indicatorsNoAction patterns that indicate positive task progress (e.g., ["success", "complete", "found"])
progress_threshold_adjustmentNoHow much to increase thresholds when progress indicators are present
repetition_thresholdNoThreshold for detecting repetitive action patterns (0.0-1.0)
semantic_intentsNoDomain-specific action intents for semantic analysis (e.g., ["navigating", "clicking", "typing"])

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "additionalProperties": false, "properties": { "alternating_threshold": { "default": 0.5, "description": "Threshold for detecting alternating action patterns (0.0-1.0)", "type": "number" }, "min_actions_for_detection": { "default": 5, "description": "Minimum number of actions required before loop detection", "type": "number" }, "progress_indicators": { "default": [], "description": "Action patterns that indicate positive task progress (e.g., [\"success\", \"complete\", \"found\"])", "items": { "type": "string" }, "type": "array" }, "progress_threshold_adjustment": { "default": 0.2, "description": "How much to increase thresholds when progress indicators are present", "type": "number" }, "repetition_threshold": { "default": 0.4, "description": "Threshold for detecting repetitive action patterns (0.0-1.0)", "type": "number" }, "semantic_intents": { "default": [], "description": "Domain-specific action intents for semantic analysis (e.g., [\"navigating\", \"clicking\", \"typing\"])", "items": { "type": "string" }, "type": "array" } }, "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cyqlelabs/mcp-dual-cycle-reasoner'

If you have feedback or need assistance with the MCP directory API, please join our Discord server