DEEPSEEK_INTEGRATION.mdโข5.68 kB
# DeepSeek Integration Complete! ๐
## Summary
Successfully integrated DeepSeek AI provider into SAGE-MCP server with full support for all three DeepSeek models.
## What Was Done
### 1. Provider Implementation โ
- Created `providers/deepseek.py` - OpenAI-compatible API integration
- Base URL: `https://api.deepseek.com`
- Full async support with proper error handling
### 2. Models Added โ
| Model | Type | Description | Use Cases |
|-------|------|-------------|-----------|
| **deepseek-chat** | General Purpose | Fast, cost-effective, strong coding | Chat, debugging, refactoring (DEFAULT) |
| **deepseek-reasoner** | Reasoning | Deep step-by-step analysis | Complex problems, math, debugging |
| **deepseek-coder** | Code Specialized | Optimized for software development | Code generation, refactoring, tests |
### 3. Configuration โ
**Environment Variable Added:**
```bash
DEEPSEEK_API_KEY=your-deepseek-api-key-here
```
**Default Model Set:**
```bash
DEFAULT_MODEL=deepseek-chat
```
**Allowed Models:**
```bash
DEEPSEEK_ALLOWED_MODELS=deepseek-reasoner,deepseek-chat,deepseek-coder
```
### 4. Files Modified โ
1. `providers/deepseek.py` - NEW: Provider implementation
2. `providers/__init__.py` - Added DeepSeek initialization
3. `config.py` - Added DEEPSEEK_API_KEY to get_api_keys()
4. `models/config.yaml` - Added 3 DeepSeek models with capabilities
5. `~/.claude/mcp_servers.json` - Added API key and configuration
6. `tests/providers/test_deepseek_provider.py` - NEW: Comprehensive tests
7. `test_deepseek.py` - NEW: Standalone testing script
## Test Results โ
### Basic Completion Test
```bash
โ DeepSeek chat response: Hello from DeepSeek test
```
### Reasoning Model Test
```bash
โ DeepSeek reasoner response:
To calculate 25 + 17, follow these steps:
1. Add the ones place digits: 5 + 7 = 12. Write down the 2 and carry over the 1 to the tens place.
2. Add the tens place digits: 2 (from 25) + 1 (from 17) + 1 (carried over) = 4.
3. Combine the tens and ones place: 42.
Thus, 25 + 17 = 42.
```
### Integration Test
```bash
โ Available models: ['deepseek-reasoner', 'deepseek-chat', 'deepseek-coder']
โ Response: Hello from SAGE-MCP! ๐
โ Integration test passed!
```
## Quality Checks โ
- โ
**Black**: Code formatted to 120 line length
- โ
**Ruff**: All linting issues fixed
- โ
**Tests**: All provider tests passing
- โ
**API Validation**: API key validated successfully
## How to Use
### Via MCP Server (Claude Desktop)
The DeepSeek provider is now automatically available in Claude Desktop. Simply restart Claude and it will use `deepseek-chat` as the default model (as configured).
### Via CLI
```bash
# Use deepseek-chat (default)
./cli.py chat "Explain async/await in Python"
# Use deepseek-reasoner for complex problems
./cli.py think "Design an algorithm for X" --model deepseek-reasoner
# Use deepseek-coder for code tasks
./cli.py refactor "path/to/code.py" --model deepseek-coder
```
### Via SAGE Tool
```python
# Chat mode
result = await sage({
"prompt": "Explain decorators",
"model": "deepseek-chat",
"mode": "chat"
})
# Reasoning mode
result = await sage({
"prompt": "Solve this complex problem...",
"model": "deepseek-reasoner",
"mode": "think"
})
# Code analysis
result = await sage({
"prompt": "Analyze this code",
"files": ["src/app.py"],
"model": "deepseek-coder",
"mode": "analyze"
})
```
## Model Capabilities
### deepseek-chat (Default) ๐ฌ
- **Reasoning**: Very Good
- **Speed**: Fast
- **Context**: 64K tokens
- **Cost**: Very Low
- **Best For**: General development, debugging, refactoring
- **Priority**: 3
### deepseek-reasoner ๐งฉ
- **Reasoning**: Excellent
- **Speed**: Slow (thinking required)
- **Context**: 64K tokens
- **Cost**: Low
- **Best For**: Complex reasoning, math, deep analysis
- **Priority**: 2
### deepseek-coder ๐จโ๐ป
- **Reasoning**: Very Good
- **Speed**: Fast
- **Context**: 64K tokens
- **Cost**: Very Low
- **Best For**: Code generation, refactoring, testing
- **Priority**: 4
## Cost Benefits
DeepSeek offers excellent price/performance ratio:
- Significantly cheaper than GPT-5/o3
- Comparable to Gemini Flash but with specialized models
- Excellent for high-volume development tasks
## Next Steps
1. **Restart Claude Desktop** to load the new configuration
2. **Test the integration** with a simple chat
3. **Explore different models** for different tasks
4. **Adjust DEFAULT_MODEL** in mcp_servers.json if needed
## Testing
Run the comprehensive test suite:
```bash
# All DeepSeek tests
python tests/providers/test_deepseek_provider.py
# Specific test
python tests/providers/test_deepseek_provider.py --test basic_completion
# Standalone API test
python test_deepseek.py
```
## Troubleshooting
### Provider Not Initialized
- Check that `DEEPSEEK_API_KEY` is set in `~/.claude/mcp_servers.json`
- Restart Claude Desktop after configuration changes
### Model Not Available
- Verify model name: `deepseek-chat`, `deepseek-reasoner`, or `deepseek-coder`
- Check `DEEPSEEK_ALLOWED_MODELS` environment variable
### API Errors
- Verify API key is valid: `python test_deepseek.py`
- Check DeepSeek API status at https://api-docs.deepseek.com/
## Architecture Notes
- **Provider Type**: OpenAI-compatible (uses AsyncOpenAI client)
- **Base URL**: https://api.deepseek.com
- **Authentication**: Bearer token via API key
- **Streaming**: Supported (via OpenAI client)
- **Tools**: Supported (function calling)
---
**Integration Status**: โ
**COMPLETE**
**Default Model**: `deepseek-chat` (most recent stable model)
**Tested**: 2025-10-28
**API Key**: Configured and validated โ