Integrates with Neo4j database to store and query temporally-aware knowledge graphs, supporting entity management, search capabilities, and graph maintenance operations
Leverages OpenAI models for LLM operations, entity extraction, and embeddings generation when building and maintaining the knowledge graph
Graphiti MCP Server
This is a standalone Model Context Protocol (MCP) server implementation for Graphiti, specifically designed as an independent service with enhanced features.
Source Repository
This project is based on the official Graphiti project. The original Graphiti framework provides the core functionality for building and querying temporally-aware knowledge graphs.
This standalone edition maintains compatibility with the original Graphiti while adding enhanced features and improved performance through FastMCP refactoring.
Key Differences from Official Graphiti MCP
This standalone edition differs from the official Graphiti MCP implementation in the following ways:
- Client-defined Group ID: Unlike the official version, this implementation allows clients to define their own
group_id
for better data organization and isolation. - FastMCP Refactoring: The server has been refactored using FastMCP framework for improved performance and maintainability.
Features
The Graphiti MCP server exposes the following key high-level functions of Graphiti:
- Episode Management: Add, retrieve, and delete episodes (text, messages, or JSON data)
- Entity Management: Search and manage entity nodes and relationships in the knowledge graph
- Search Capabilities: Search for facts (edges) and node summaries using semantic and hybrid search
- Group Management: Organize and manage groups of related data with group_id filtering
- Graph Maintenance: Clear the graph and rebuild indices
Quick Start
Installation
- Ensure you have Python 3.10 or higher installed.
- Install the package using pip: install from source:
Prerequisites
- A running Neo4j database (version 5.26 or later required)
- OpenAI API key for LLM operations (optional, but required for entity extraction)
Setup
- Copy the provided
.env.example
file to create a.env
file: - Edit the
.env
file to set your configuration:
Running the Server
Direct Execution
To run the Graphiti MCP server directly:
Or with options:
Using uv
If you prefer to use uv
for package management:
Docker Deployment
The Graphiti MCP server can be deployed using Docker:
Or using Docker Compose (includes Neo4j):
Configuration
The server uses the following environment variables:
NEO4J_URI
: URI for the Neo4j database (default:bolt://localhost:7687
)NEO4J_USER
: Neo4j username (default:neo4j
)NEO4J_PASSWORD
: Neo4j password (default:demodemo
)OPENAI_API_KEY
: OpenAI API key (required for LLM operations)OPENAI_BASE_URL
: Optional base URL for OpenAI APIMODEL_NAME
: OpenAI model name to use for LLM operations (default:gpt-4.1-mini
)SMALL_MODEL_NAME
: OpenAI model name to use for smaller LLM operations (default:gpt-4.1-nano
)LLM_TEMPERATURE
: Temperature for LLM responses (0.0-2.0, default: 0.0)AZURE_OPENAI_ENDPOINT
: Optional Azure OpenAI LLM endpoint URLAZURE_OPENAI_DEPLOYMENT_NAME
: Optional Azure OpenAI LLM deployment nameAZURE_OPENAI_API_VERSION
: Optional Azure OpenAI LLM API versionAZURE_OPENAI_EMBEDDING_API_KEY
: Optional Azure OpenAI Embedding deployment keyAZURE_OPENAI_EMBEDDING_ENDPOINT
: Optional Azure OpenAI Embedding endpoint URLAZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME
: Optional Azure OpenAI embedding deployment nameAZURE_OPENAI_EMBEDDING_API_VERSION
: Optional Azure OpenAI API versionAZURE_OPENAI_USE_MANAGED_IDENTITY
: Optional use Azure Managed Identities for authenticationSEMAPHORE_LIMIT
: Episode processing concurrency (default: 10)MCP_SERVER_HOST
: Host to bind the server to (default: 127.0.0.1)MCP_SERVER_PORT
: Port to bind the server to (default: 8000)
Available Arguments
--transport
: Choose the transport method (stdio
,http
, orsse
, default:stdio
)--model
: Overrides theMODEL_NAME
environment variable--small-model
: Overrides theSMALL_MODEL_NAME
environment variable--temperature
: Overrides theLLM_TEMPERATURE
environment variable--group-id
: Set a namespace for the graph (default: "default")--destroy-graph
: If set, destroys all Graphiti graphs on startup--use-custom-entities
: Enable entity extraction using the predefined ENTITY_TYPES--host
: Host to bind the MCP server to (default: 127.0.0.1)--port
: Port to bind the MCP server to (default: 8000)--path
: Path for transport endpoint (default: /mcp for HTTP, /sse for SSE)
Integrating with MCP Clients
STDIO Transport (for Claude Desktop, etc.)
HTTP Transport (for general HTTP clients)
SSE Transport (for Cursor, etc.)
Available Tools
The Graphiti MCP server exposes the following tools:
add_memory
: Add an episode to the knowledge graph (supports text, JSON, and message formats)search_memory_nodes
: Search the knowledge graph for relevant node summariessearch_memory_facts
: Search the knowledge graph for relevant facts (edges between entities)delete_entity_edge
: Delete an entity edge from the knowledge graphdelete_episode
: Delete an episode from the knowledge graphget_entity_edge
: Get an entity edge by its UUIDget_episodes
: Get the most recent episodes for a specific groupclear_graph
: Clear all data from the knowledge graph and rebuild indices
Working with JSON Data
The Graphiti MCP server can process structured JSON data through the add_memory
tool with source="json"
:
Requirements
- Python 3.10 or higher
- Neo4j database (version 5.26 or later required)
- OpenAI API key (for LLM operations and embeddings)
This server cannot be installed
hybrid server
The server is able to function both locally and remotely, depending on the configuration or use case.
A framework for building and querying temporally-aware knowledge graphs that allows AI assistants to interact with graph capabilities through the Model Context Protocol.
Related MCP Servers
- AsecurityFlicenseAqualityProvides a scalable knowledge graph implementation for Model Context Protocol using Elasticsearch, enabling AI models to store and query information with advanced search capabilities, memory-like behavior, and multi-zone architecture.Last updated -1713TypeScript
- AsecurityAlicenseAqualityA Model Context Protocol server implementation that enables AI assistants to securely interact with GreptimeDB, allowing them to explore database schema, read data, and execute SQL queries through a controlled interface.Last updated -121PythonMIT License
- AsecurityAlicenseAqualityScalable, high-performance knowledge graph memory system with semantic search, temporal awareness, and advanced relation management.Last updated -2085157TypeScriptMIT License
- -securityAlicense-qualityA bridge that exposes structured, verifiable context and query capabilities of a local Temporal Knowledge Graph to MCP-compatible AI agents, enabling them to access explicit project history and relationships rather than just semantic content.Last updated -1PythonMIT License