Skip to main content
Glama

3GPP MCP Server

by edhijlu
technical-approach-v2.md17.9 kB
# Technical Approach & Architecture - V2 Guidance System ## Overview This document outlines the technical approach, architecture decisions, and implementation strategy for the 3GPP MCP Server v2. Our approach combines intelligent guidance generation, domain-specific knowledge modeling, and lightweight resource utilization to create an educational interface for 3GPP telecommunications research. ## Architecture Philosophy ### Core Design Principles 1. **Intelligence Over Storage**: Store structured knowledge about 3GPP, not specification content 2. **Guidance Over Answers**: Provide research strategies rather than final answers 3. **Education Over Automation**: Teach methodology rather than deliver results 4. **Lightweight Over Comprehensive**: Optimize for speed and efficiency with essential guidance ### Knowledge-Driven Architecture ```mermaid graph TB subgraph "Client Applications" CD[Claude Desktop] CA[Custom Applications] WI[Web Interface] end subgraph "MCP Protocol Layer" MCP[MCP Server Core] TH[Tools Handler] RH[Resources Handler] PH[Prompts Handler] end subgraph "Guidance Intelligence Layer" GE[Guidance Engine] KB[Knowledge Base] SG[Strategy Generator] CP[Context Provider] TG[Template Generator] end subgraph "Knowledge Layer" SM[Specification Map] RM[Relationship Map] CM[Concept Map] PM[Pattern Map] TM[Template Map] end CD --> MCP CA --> MCP WI --> MCP MCP --> TH MCP --> RH MCP --> PH TH --> GE RH --> KB PH --> TG GE --> KB GE --> SG GE --> CP KB --> SM KB --> RM KB --> CM SG --> PM TG --> TM ``` ## Core Components ### 1. MCP Server Core (`src/index.ts`) **Responsibility**: Lightweight MCP protocol implementation focused on guidance delivery **Key Differences from V1**: - No large dataset management - No complex search infrastructure - Focus on rapid guidance generation - Educational response formatting **Implementation Architecture**: ```typescript class GPPGuidanceMCPServer { private server: MCP.Server private guidanceEngine: GuidanceEngine private knowledgeBase: KnowledgeBase private templateGenerator: TemplateGenerator // Lightweight handlers optimized for guidance async handleToolCall(request: ToolRequest): Promise<GuidanceResponse> async handleResourceAccess(uri: string): Promise<KnowledgeResource> async handlePromptGeneration(name: string): Promise<EducationalPrompt> } ``` ### 2. Guidance Engine (`src/utils/guidance-engine.ts`) **Responsibility**: Core intelligence for providing 3GPP research guidance **Intelligence Components**: #### Query Analysis Pipeline: ```mermaid sequenceDiagram participant User participant GE as Guidance Engine participant KB as Knowledge Base participant SG as Strategy Generator participant TG as Template Generator User->>GE: Research Query GE->>GE: Analyze Intent & Domain GE->>GE: Assess User Level GE->>KB: Get Domain Knowledge KB-->>GE: Structured Knowledge GE->>SG: Generate Strategy SG-->>GE: Research Approach GE->>TG: Format Response TG-->>GE: Educational Template GE-->>User: Intelligent Guidance ``` #### Intent Classification System: ```typescript interface QueryAnalysis { intent: QueryIntent // discovery | learning | comparison | implementation | troubleshooting | evolution domain: string // authentication | mobility | session_management | security | etc. concepts: string[] // Extracted 3GPP concepts complexity: number // 0-1 complexity score userLevel: ExpertiseLevel // beginner | intermediate | expert } ``` #### Adaptive Response Generation: - **Beginner Level**: Focus on fundamentals, terminology, basic concepts - **Intermediate Level**: Emphasize implementation details and cross-references - **Expert Level**: Provide strategic analysis, optimization insights, latest developments ### 3. Knowledge Base (`src/utils/knowledge-base.ts`) **Responsibility**: Structured 3GPP domain knowledge without specification text **Knowledge Architecture**: #### Specification Metadata Model: ```typescript interface SpecificationMetadata { id: string // "TS 24.501" title: string // Full specification title series: string // "24" release: string // "Rel-16" workingGroup: string // "CT1" purpose: string // What this spec defines keyTopics: string[] // Main topics covered dependencies: string[] // Prerequisite specifications relatedSpecs: string[] // Related specifications searchKeywords: string[] // Effective search terms commonQuestions: string[] // Typical research questions implementationNotes: string[] // Implementation considerations evolutionNotes?: string // How it evolved from previous versions } ``` #### Knowledge Graph Structure: ```typescript interface KnowledgeGraph { specifications: Map<string, SpecificationMetadata> protocols: Map<string, ProtocolMetadata> concepts: Map<string, ConceptMetadata> patterns: Map<string, ResearchPattern> relationships: Map<string, Relationship[]> } ``` #### Relationship Modeling: ```typescript type RelationshipType = 'defines' | 'uses' | 'extends' | 'replaces' | 'references' | 'implements' | 'depends_on' interface Relationship { type: RelationshipType target: string // ID of related entity strength: number // 0-1, strength of relationship description?: string // Optional explanation } ``` ### 4. Strategy Generator (`src/utils/strategy-generator.ts`) **Responsibility**: Creates targeted research strategies based on user queries **Strategy Types**: #### Research Strategy Framework: ```typescript interface SearchStrategy { approach: string // Overall strategy description steps: ResearchStep[] // Ordered research steps keywords: string[] // Recommended search terms sources: string[] // Where to search timeline: string // Expected time investment } interface ResearchStep { step: number description: string action: string expectedOutcome: string timeEstimate: string } ``` #### Pattern-Based Strategy Generation: - **Exploratory Pattern**: For broad topics and initial learning - **Targeted Pattern**: For specific implementation questions - **Comparative Pattern**: For analyzing differences between approaches - **Troubleshooting Pattern**: For debugging and problem-solving ### 5. Template Generator (`src/utils/template-generator.ts`) **Responsibility**: Formats guidance into educational, actionable responses **Template Architecture**: #### Response Template Categories: ```typescript interface GuidanceTemplates { specificationIntroduction: Template // Introduce specifications to users learningPath: Template // Structured learning approaches searchStrategy: Template // Effective search methodologies comparisonFramework: Template // Systematic comparison approaches implementationRoadmap: Template // Implementation planning guidance troubleshootingGuide: Template // Systematic problem-solving } ``` #### Adaptive Formatting: ```typescript interface TemplateGenerator { formatSpecificationSuggestions(specs: SpecificationMetadata[], domain: string, userLevel: ExpertiseLevel): Promise<string> formatSearchStrategy(pattern: SearchPattern, userLevel: ExpertiseLevel): Promise<string> formatLearningPath(domain: string, concepts: string[], userLevel: ExpertiseLevel): Promise<string> formatImplementationGuidance(specs: SpecificationMetadata[], domain: string, userLevel: ExpertiseLevel): Promise<string> } ``` ## Data Architecture ### Lightweight Knowledge Representation Instead of storing specification text, v2 maintains structured intelligence: #### Memory-Optimized Storage: ```typescript class CompactKnowledge { private specMap: Map<string, number> = new Map() // ID to index mapping private specData: SpecificationMetadata[] = [] // Compact array storage private relationships: number[][] = [] // Index-based relationships // Target: <100MB total memory usage getSpecification(id: string): SpecificationMetadata | null getRelatedSpecs(id: string): SpecificationMetadata[] suggestByTopic(topic: string): SpecificationMetadata[] } ``` #### Knowledge Content Examples: ```typescript // Series organization knowledge const seriesKnowledge = { "21": { name: "Requirements", description: "Service requirements", workingGroup: "SA1" }, "24": { name: "Protocols", description: "Core network protocols", workingGroup: "CT1" }, "33": { name: "Security", description: "Security architecture", workingGroup: "SA3" }, "38": { name: "5G Radio", description: "5G NR radio access", workingGroup: "RAN2" } } // Protocol relationship knowledge const protocolStack = { "NAS": { layer: "L3", protocols: ["Registration", "Session"], specs: ["24.301", "24.501"] }, "RRC": { layer: "L3", protocols: ["Connection", "Mobility"], specs: ["36.331", "38.331"] }, "PDCP": { layer: "L2", protocols: ["Compression", "Security"], specs: ["36.323", "38.323"] } } // Research pattern knowledge const researchPatterns = { "authentication": { startingSpecs: ["TS 33.501", "TS 24.501"], keywords: ["SUCI", "5G-AKA", "authentication"], readingOrder: ["architecture", "procedures", "implementation"] } } ``` ## Performance Architecture ### Response Generation Pipeline **Sub-500ms Response Targets**: ```mermaid graph LR A[Query] --> B[Parse Intent: <50ms] B --> C[Knowledge Lookup: <100ms] C --> D[Strategy Generation: <200ms] D --> E[Template Formatting: <100ms] E --> F[Response: <500ms total] ``` **Optimization Strategies**: - **Pre-computed Templates**: Common guidance patterns cached in memory - **Fast Intent Classification**: Lightweight keyword-based classification - **Efficient Knowledge Indexing**: Hash-based lookup structures - **Response Streaming**: Progressive response generation for complex queries ### Scalability Design **Stateless Architecture**: ```typescript class StatelessGuidanceEngine { // No instance state - all context passed in requests async generateGuidance(query: UserQuery, context: RequestContext): Promise<GuidanceResponse> { // Thread-safe, stateless processing // Each request is independent and can be processed in parallel } } ``` **Resource Targets**: - **Memory Usage**: <100MB total (vs 2-4GB for v1) - **CPU Usage**: <5% baseline, <50% during active processing - **Startup Time**: <5 seconds (vs 2-5 minutes for v1) - **Concurrent Users**: 1000+ simultaneous users (vs ~50 for v1) ## Tool Architecture ### V2 Guidance Tools #### `guide_specification_search` **Purpose**: Help users formulate effective specification searches ```typescript interface SpecificationSearchGuidance { suggestedSpecs: SpecificationSuggestion[] searchStrategy: SearchStrategy keywords: string[] tips: string[] nextSteps: string[] } ``` **Implementation Flow**: ```typescript async handleGuideSearch(args: SearchGuidanceArgs): Promise<MCPResponse> { const analysis = await this.analyzeSearchIntent(args.query) const suggestions = await this.knowledgeBase.getSuggestedSpecs(analysis) const strategy = await this.strategyGenerator.createSearchStrategy(analysis) return this.templateGenerator.formatSearchGuidance({ suggestions, strategy, explanation: this.explainReasoning(analysis), nextSteps: this.suggestNextSteps(strategy) }) } ``` #### `explain_3gpp_structure` **Purpose**: Provide educational content about 3GPP organization ```typescript interface GPPStructureExplanation { seriesOverview: SeriesDescription[] workingGroups: WorkingGroupInfo[] releaseTimeline: ReleaseInfo[] relationships: SpecificationRelationship[] learningPath: string[] } ``` #### `map_requirements_to_specs` **Purpose**: Help users map technical requirements to appropriate specifications ```typescript interface RequirementMapping { primarySpecs: string[] // Main specifications to check supportingSpecs: string[] // Additional relevant specs readingOrder: string[] // Suggested sequence keyTopics: string[] // Important topics to focus on implementation: string[] // Implementation considerations timeEstimate: string // Expected research duration } ``` #### `generate_research_strategy` **Purpose**: Create comprehensive research approaches for complex topics ```typescript interface ResearchStrategy { approach: string // Overall strategy description phases: ResearchPhase[] // Step-by-step research phases resources: string[] // Recommended tools and resources timeline: string // Estimated time requirements deliverables: string[] // Expected outputs successCriteria: string[] // How to know you've succeeded } ``` ### Resource Architecture #### `3gpp://knowledge/series` **Content**: Comprehensive guide to 3GPP specification series (21-38) #### `3gpp://knowledge/protocols` **Content**: Protocol relationship mapping and guidance (NAS, RRC, PDCP, etc.) #### `3gpp://knowledge/research-patterns` **Content**: Common research methodologies and patterns ## Integration Architecture ### MCP Protocol Compliance **Lightweight Implementation**: ```typescript class LightweightMCPServer { private tools: Map<string, GuidanceTool> = new Map() private resources: Map<string, KnowledgeResource> = new Map() private prompts: Map<string, EducationalPrompt> = new Map() // Minimal overhead MCP handlers async handleToolCall(request: ToolCallRequest): Promise<ToolResponse> async handleResourceRead(uri: string): Promise<ResourceResponse> async handlePromptGet(name: string): Promise<PromptResponse> } ``` ### Client Integration **Claude Desktop Configuration**: ```json { "mcpServers": { "3gpp-guidance": { "command": "node", "args": ["dist/index.js"], "cwd": "/path/to/3gpp-mcp-server-v2", "description": "Lightweight 3GPP research guidance" } } } ``` ## Security & Privacy Architecture ### Minimal Attack Surface **Security Benefits of Lightweight Design**: - **No Large Datasets**: No sensitive specification content stored locally - **Read-Only Knowledge**: Knowledge base is static and read-only - **Stateless Processing**: No user data persistence between requests - **Simple Deployment**: Fewer components to secure and monitor **Security Measures**: ```typescript interface SecurityControls { inputValidation: { maxQueryLength: 1000 sanitizeInput: boolean rateLimiting: boolean } outputSecurity: { preventCodeInjection: boolean sanitizeResponses: boolean limitResponseSize: boolean } } ``` ### Privacy-First Design - **No Query Logging**: User queries are not stored or logged - **No User Tracking**: No persistent user identification - **No External Calls**: All processing happens locally - **No Data Collection**: No usage analytics or telemetry ## Monitoring & Observability ### Lightweight Monitoring **Essential Metrics**: ```typescript interface LightweightMetrics { performance: { responseTime: Histogram // <500ms target throughput: Counter // Requests per second errorRate: Counter // Error percentage } usage: { toolUsage: Counter // Which guidance tools are popular queryPatterns: Counter // Common query types userSatisfaction: Gauge // Response quality feedback } system: { memoryUsage: Gauge // <100MB target cpuUsage: Gauge // CPU efficiency uptime: Counter // System availability } } ``` **Health Monitoring**: ```typescript interface HealthChecks { knowledgeBase: () => Promise<boolean> // Knowledge base accessibility responseGeneration: () => Promise<boolean> // Can generate guidance responses memoryUsage: () => Promise<boolean> // Memory within target limits responseTime: () => Promise<boolean> // Response time acceptable } ``` ## Deployment Architecture ### Single Binary Deployment **Deployment Simplicity**: - **No Database Setup**: All knowledge embedded in application - **No External Dependencies**: Self-contained guidance system - **Minimal Configuration**: Single configuration file - **Horizontal Scaling**: Stateless design enables easy replication **Container Deployment**: ```dockerfile FROM node:18-alpine WORKDIR /app COPY package*.json ./ RUN npm ci --only=production COPY dist/ ./dist/ EXPOSE 3000 CMD ["node", "dist/index.js"] ``` **Resource Requirements**: - **CPU**: 1 vCPU (baseline), 2-4 vCPU (high load) - **Memory**: 256MB (minimum), 512MB (recommended) - **Storage**: <100MB (application + knowledge base) - **Network**: Minimal (no external dependencies) ## Conclusion The V2 technical approach demonstrates that intelligent guidance can be more valuable than data hosting while requiring dramatically fewer resources. By focusing on knowledge representation rather than content storage, we achieve: - **95% resource reduction** compared to v1 data hosting approach - **10x improvement** in response times through lightweight processing - **20x improvement** in concurrent user capacity through stateless design - **Educational value** through guidance-focused architecture This approach represents the evolution of AI assistance from information retrieval to capability enhancement, aligning with the core philosophy of the Model Context Protocol.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/edhijlu/3gpp-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server