Skip to main content
Glama

Hugging Face MCP Server

by evalstate
prompts.py922 B
import asyncio from mcp_agent.core.fastagent import FastAgent # Create the application fast = FastAgent("mcp server tests") # Define the agent @fast.agent(name="anon",instruction="You are a helpful AI Agent",servers=["anon_hf"]) async def main(): # use the --model command line switch or agent arguments to change model async with fast.run() as agent: await agent.interactive() # anonymous tool calling await agent.anon("***CALL_TOOL hf_whoami {}") await agent.anon.apply_prompt("Model Details",{"model_id": "openai/gpt-oss-120b"}) await agent.anon.apply_prompt("Dataset Details",{"dataset_id": "Anthropic/hh-rlhf"}) # prompt application await agent.anon.apply_prompt("User Summary",{"user_id": "DVe0UTvm4"}) await agent.anon.apply_prompt("Paper Summary",{"paper_id": "arxiv:2502.16161"}) if __name__ == "__main__": asyncio.run(main())

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/evalstate/hf-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server