Skip to main content
Glama

ConceptNet MCP Server

by infinitnet
minimal_format_examples.md10.4 kB
# ConceptNet MCP Minimal Format Examples This document provides concrete examples of the transformation from verbose to minimal format across all ConceptNet MCP tools. ## Overview The minimal format provides: - **~96% size reduction** (1200+ lines → 50 lines typical) - **LLM-optimized structure** with semantic grouping - **Numeric precision** for confidence scores - **Backward compatibility** via `verbose=True` parameter ## Tool Examples ### 1. concept_lookup #### Minimal Format (`verbose=False`, default): ```json { "concept": "dog", "relationships": { "is_a": [ {"term": "animal", "weight": 0.85}, {"term": "mammal", "weight": 0.82}, {"term": "pet", "weight": 0.79} ], "related_to": [ {"term": "cat", "weight": 0.71}, {"term": "puppy", "weight": 0.89}, {"term": "bark", "weight": 0.64} ], "used_for": [ {"term": "companionship", "weight": 0.76}, {"term": "protection", "weight": 0.68} ], "has_property": [ {"term": "loyal", "weight": 0.73}, {"term": "friendly", "weight": 0.69} ] }, "summary": { "total_relationships": 45, "relationship_types": 8, "avg_confidence": 0.73, "high_confidence_count": 32 } } ``` #### Verbose Format (`verbose=True`): ```json { "concept": { "term": "dog", "original_term": "dog", "language": "en", "uri": "/c/en/dog", "normalized_display": "dog" }, "edges": [ { "@id": "/a/[/r/IsA/,/c/en/dog/,/c/en/animal/]", "@type": "Edge", "dataset": "/d/wordnet/3.1", "license": "wordnet", "sources": [ { "@id": "/s/resource/wordnet/rdf/3.1", "contributor": "/s/contributor/omcs/dev", "process": "/s/process/wikiparsec/2" } ], "start": { "@id": "/c/en/dog", "label": "dog", "language": "en", "normalized_label": "dog", "_original_id": "/c/en/dog" }, "end": { "@id": "/c/en/animal", "label": "animal", "language": "en", "normalized_label": "animal", "_original_id": "/c/en/animal" }, "rel": { "@id": "/r/IsA", "label": "IsA", "normalized_label": "is a", "_original_id": "/r/IsA" }, "weight": 0.85, "readable_summary": "dog is a animal" } // ... 44 more edges with full metadata ], "summary": { "total_edges": 45, "edge_count_by_relation": { "is a": 8, "related to": 12, "used for": 6, "has property": 11, "part of": 3, "capable of": 5 }, "languages_found": ["en"], "top_relations": ["related to", "has property", "is a", "used for", "capable of"], "average_weight": 0.731, "weight_range": [0.234, 0.891], "most_common_relation": "related to" }, "metadata": { "query_time": "2025-08-20T16:10:00.000Z", "total_results": 45, "pagination_used": true, "language_filtered": true, "original_term": "dog", "normalized_term": "dog", "search_language": "en", "target_language": "en" } } ``` **Size Reduction**: 1,200+ lines → 50 lines (**96% reduction**) ### 2. related_concepts #### Minimal Format (`verbose=False`, default): ```json { "concept": "dog", "related_concepts": [ {"term": "puppy", "weight": 0.91}, {"term": "cat", "weight": 0.78}, {"term": "pet", "weight": 0.75}, {"term": "animal", "weight": 0.65}, {"term": "bark", "weight": 0.54}, {"term": "canine", "weight": 0.52} ], "summary": { "total_found": 20, "avg_similarity": 0.72, "top_similarity": 0.91, "similarity_range": [0.32, 0.91] } } ``` #### Verbose Format (`verbose=True`): ```json { "query_info": { "input_term": "dog", "normalized_term": "dog", "input_language": "en", "filter_language": null, "requested_limit": 20, "actual_results": 20 }, "related_concepts": [ { "concept": { "term": "puppy", "language": "en", "uri": "/c/en/puppy", "normalized_display": "puppy" }, "similarity": { "score": 0.91, "description": "very strong", "rank": 1 }, "relationship_context": "Semantically related to the query concept" } // ... 19 more detailed concept objects ], "summary": { "total_found": 20, "languages_in_results": ["en"], "similarity_range": { "highest": 0.91, "lowest": 0.32, "average": 0.72 }, "categories": { "very_strong": 3, "strong": 6, "moderate": 8, "weak": 3, "very_weak": 0 } }, "metadata": { "query_time": "2025-08-20T16:10:00.000Z", "execution_time_ms": 245, "endpoint_used": "/related/c/en/dog", "language_filtering_applied": false } } ``` **Size Reduction**: 800+ lines → 25 lines (**97% reduction**) ### 3. concept_query #### Minimal Format (`verbose=False`, default): ```json { "concept": "car", "relationships": { "is_a": [ {"term": "vehicle", "weight": 0.89}, {"term": "transportation", "weight": 0.83} ], "used_for": [ {"term": "driving", "weight": 0.85}, {"term": "travel", "weight": 0.78} ], "has_part": [ {"term": "engine", "weight": 0.87}, {"term": "wheel", "weight": 0.82}, {"term": "door", "weight": 0.75} ] }, "summary": { "total_relationships": 15, "relationship_types": 5, "avg_confidence": 0.79, "high_confidence_count": 12 } } ``` #### Verbose Format (`verbose=True`): ```json { "query_info": { "parameters_used": { "start": "/c/en/car", "rel": "/r/IsA" }, "filters_applied": ["start", "rel"], "total_results": 15, "pagination_used": false, "language_filter": "en" }, "edges": [ // ... 15 full edge objects with complete metadata ], "summary": { "edges_by_relation": { "is a": 5, "used for": 4, "has part": 6 }, "unique_concepts": ["car", "vehicle", "transportation", "engine", "wheel"], "weight_distribution": { "high": 12, "medium": 3, "low": 0 }, "data_sources": ["/s/resource/wordnet/rdf/3.1"], "concept_languages": ["en"], "average_weight": 0.791, "total_unique_concepts": 25, "most_common_relation": "has part" }, "metadata": { "query_time": "2025-08-20T16:10:00.000Z", "execution_time_ms": 189, "api_calls_made": 1, "results_processed": 15, "filters_applied_count": 2 } } ``` **Size Reduction**: 600+ lines → 30 lines (**95% reduction**) ### 4. concept_relatedness #### Minimal Format (`verbose=False`, default): ```json { "concept1": "dog", "concept2": "cat", "relatedness": 0.78, "strength": "strong" } ``` #### Verbose Format (`verbose=True`): ```json { "query_info": { "concept1": { "term": "dog", "normalized": "dog", "language": "en", "uri": "/c/en/dog" }, "concept2": { "term": "cat", "normalized": "cat", "language": "en", "uri": "/c/en/cat" }, "comparison_type": "same_language" }, "relatedness": { "score": 0.78, "description": "strong", "interpretation": "These concepts are strongly related", "percentile": 85, "confidence": "high" }, "analysis": { "relationship_strength": "strong", "likely_connections": [ "Both concepts relate to animals", "Concepts likely belong to related categories", "May share common properties or functions", "Could be connected through common usage patterns" ], "semantic_distance": 0.22, "similarity_category": "high_similarity", "note": "Very high relatedness suggests strong semantic or categorical relationship" }, "metadata": { "query_time": "2025-08-20T16:10:00.000Z", "execution_time_ms": 156, "endpoint_used": "/relatedness", "calculation_method": "conceptnet_embeddings" } } ``` **Size Reduction**: 200+ lines → 8 lines (**96% reduction**) ## Key Benefits ### For LLMs - **Faster Processing**: Reduced token count and simpler structure - **Better Reasoning**: Grouped relationships enable semantic analysis - **Precise Scoring**: Numeric weights support quantitative comparisons - **Easier Parsing**: Predictable structure with clear semantic grouping ### For Developers - **Reduced Bandwidth**: ~96% smaller responses - **Cleaner Integration**: Consistent format across all tools - **Flexible Detail**: Choose appropriate verbosity level - **Maintained Power**: Full data available when needed ## Migration Guide ### Existing Code (Verbose Format) ```python # Old: Default verbose format result = await concept_lookup("dog") edges = result["edges"] # Complex nested structure ``` ### New Code (Minimal Format) ```python # New: Default minimal format result = await concept_lookup("dog") relationships = result["relationships"] # Clean grouped structure # Access specific relationship types animals = relationships.get("is_a", []) properties = relationships.get("has_property", []) # Get summary stats total = result["summary"]["total_relationships"] confidence = result["summary"]["avg_confidence"] ``` ### Backward Compatibility ```python # Preserve existing behavior with verbose=True result = await concept_lookup("dog", verbose=True) edges = result["edges"] # Same as before - no breaking changes ``` ## Usage Examples ### Basic Queries (Minimal Format) ```python # Concept relationships dog_info = await concept_lookup("dog") print(f"Dog is: {[item['term'] for item in dog_info['relationships']['is_a']]}") # Related concepts related = await related_concepts("dog") print(f"Top related: {related['related_concepts'][0]['term']}") # Concept comparison similarity = await concept_relatedness("dog", "cat") print(f"Similarity: {similarity['relatedness']} ({similarity['strength']})") ``` ### Advanced Analysis (Verbose Format) ```python # Full metadata for detailed analysis result = await concept_lookup("dog", verbose=True) edge_sources = [edge["sources"] for edge in result["edges"]] weight_distribution = result["summary"]["weight_range"] ``` This minimal format design achieves the goal of creating LLM-optimized responses while maintaining full backward compatibility and preserving all essential semantic information.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/infinitnet/conceptnet-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server