Skip to main content
Glama
cognitive-architecture-guide.md•27.7 kB
# Cognitive Architecture Guide ## Introduction The ThoughtMCP cognitive architecture implements a sophisticated model of human-like thinking processes, drawing from neuroscience, cognitive psychology, and complex systems theory. This guide explains the architecture's design principles, components, and how to tune them for optimal performance. ## Architectural Overview ### Biological Inspiration The architecture is inspired by several key findings from cognitive neuroscience: 1. **Dual-Process Theory**: Human thinking operates through two systems - fast intuitive processing (System 1) and slow deliberative reasoning (System 2) 2. **Hierarchical Temporal Memory**: The brain processes information through multiple hierarchical layers with temporal integration 3. **Predictive Processing**: The brain constantly generates predictions and updates models based on prediction errors 4. **Emotional Modulation**: Emotions significantly influence decision-making through somatic markers 5. **Metacognitive Monitoring**: Humans continuously monitor and adjust their thinking processes ### System Architecture ```mermaid graph TB Input[Input Text] --> SP[Sensory Processor] SP --> PP[Predictive Processor] PP --> WM[Working Memory] WM --> MS[Memory System] MS --> EM[Episodic Memory] MS --> SM[Semantic Memory] MS --> CE[Consolidation Engine] WM --> EP[Emotional Processor] EP --> DPC[Dual Process Controller] DPC --> S1[System 1 - Intuitive] DPC --> S2[System 2 - Deliberative] S1 --> SNP[Stochastic Neural Prosor] S2 --> SNP SNP --> ExP[Executive Processor] ExP --> MC[Metacognition Module] MC --> Output[Thought Output] MS -.-> WM MS -.-> EP MS -.-> DPC MC -.-> MS ``` ## Core Components ### 1. Sensory Processing Layer **Purpose**: Normalizes and filters input information, mimicking early sensory processing in the brain. **Key Functions**: - **Tokenization**: Breaks input into semantic chunks - **Attention Filtering**: Focuses on relevant information (thalamic gating) - **Pattern Detection**: Identifies recurring patterns and structures - **Salience Computation**: Ranks information by relevance **Configuration Parameters**: ```typescript interface SensoryConfig { attention_threshold: number; // 0.0-1.0, default: 0.3 max_tokens: number; // Default: 1000 pattern_detection: boolean; // Default: true semantic_chunking: boolean; // Default: true } ``` **Tuning Guidelines**: - **Lower attention_threshold (0.1-0.3)**: More information passes through, better for complex analysis - **Higher attention_threshold (0.4-0.7)**: More focused processing, better for simple tasks - **Disable pattern_detection**: Faster processing for simple inputs - **Enable semantic_chunking**: Better understanding of complex texts ### 2. Working Memory Module **Purpose**: Temporarily holds and manipulates information, implementing Miller's 7±2 capacity limitation. **Key Functions**: - **Capacity Management**: Limits active information chunks - **Decay Mechanisms**: Information fades over time without rehearsal - **Chunking**: Groups related information for efficient storage - **Rehearsal**: Maintains important information in active state **Configuration Parameters**: ```typescript interface WorkingMemoryConfig { capacity: number; // Default: 7 (Miller's number) decay_rate: number; // 0.0-1.0, default: 0.1 rehearsal_threshold: number; // 0.0-1.0, default: 0.5 chunking_enabled: boolean; // Default: true } ``` **Tuning Guidelines**: - **Increase capacity (8-12)**: Better for complex reasoning, higher memory usage - **Decrease capacity (4-6)**: Faster processing, more focused thinking - **Lower decay_rate (0.05-0.08)**: Information persists longer - **Higher decay_rate (0.15-0.25)**: More dynamic, responsive to new information ### 3. Dual-Process Controller **Purpose**: Implements Kahneman's dual-process theory with System 1 (intuitive) and System 2 (deliberative) thinking. #### System 1 (Intuitive Processing) - **Speed**: Very fast (50-200ms) - **Method**: Pattern matching, heuristics, cached responses - **Use Cases**: Familiar problems, quick decisions, first impressions - **Characteristics**: Automatic, effortless, emotional #### System 2 (Deliberative Processing) - **Speed**: Slower (200-1000ms) - **Method**: Systematic reasoning, logical analysis, step-by-step evaluation - **Use Cases**: Novel problems, important decisions, complex analysis - **Characteristics**: Controlled, effortful, logical **Configuration Parameters**: ```typescript interface DualProcessConfig { conflict_threshold: number; // 0.0-1.0, default: 0.7 system2_timeout: number; // milliseconds, default: 5000 confidence_weighting: number; // 0.0-1.0, default: 0.8 mode_bias: "system1" | "system2" | "balanced"; // default: "balanced" } ``` **Tuning Guidelines**: - **Lower conflict_threshold (0.4-0.6)**: System 2 activates more often, slower but more thorough - **Higher conflict_threshold (0.8-0.9)**: More reliance on System 1, faster responses - **Increase system2_timeout**: Allow more time for complex reasoning - **Adjust mode_bias**: Bias toward specific processing style ### 4. Memory Systems #### Episodic Memory **Purpose**: Stores personal experiences with temporal and contextual information. **Characteristics**: - Time-stamped experiences - Rich contextual information - Emotional tagging - Decay over time - Context-dependent retrieval **Configuration**: ```typescript interface EpisodicMemoryConfig { capacity: number; // Default: 10000 decay_rate: number; // Default: 0.01 per day retrieval_threshold: number; // Default: 0.3 context_weighting: number; // Default: 0.6 emotional_boost: number; // Default: 1.5 } ``` #### Semantic Memory **Purpose**: Stores factual knowledge and concepts without temporal context. **Characteristics**: - Timeless factual information - Concept hierarchies - Embedding-based similarity - Resistant to decay - Association networks **Configuration**: ```typescript interface SemanticMemoryConfig { embedding_dimension: number; // Default: 768 similarity_metric: "cosine" | "euclidean"; // Default: "cosine" clustering_threshold: number; // Default: 0.7 concept_hierarchy: boolean; // Default: true } ``` #### Consolidation Engine **Purpose**: Transfers patterns from episodic to semantic memory, mimicking sleep consolidation. **Process**: 1. **Pattern Detection**: Identifies recurring themes across **Importance Assessment**: Evaluates which patterns to consolidate 2. **Knowledge Extraction**: Creates semantic knowledge from episodic patterns 3. **Memory Pruning**: Removes redundant or low-importance memories **Configuration**: ```typescript interface ConsolidationConfig { consolidation_interval: number; // milliseconds, default: 3600000 (1 hour) pattern_threshold: number; // Default: 0.6 importance_threshold: number; // Default: 0.5 pruning_enabled: boolean; // Default: true max_consolidation_time: number; // milliseconds, default: 30000 } ``` ### 5. Emotional Processing System **Purpose**: Assesses emotional content and applies somatic markers to influence decision-making. **Key Functions**: - **Emotional Assessment**: Evaluates valence, arousal, and dominance - **Somatic Markers**: Associates decision patterns with emotional outcomes - **Decision Modulation**: Biases choices based on emotional context - **State Tracking**: Maintains current emotional state **Configuration Parameters**: ```typescript interface EmotionalConfig { emotional_influence: number; // 0.0-1.0, default: 0.3 somatic_marker_strength: number; // 0.0-1.0, default: 0.5 emotional_memory: boolean; // Default: true valence_sensitivity: number; // 0.0-1.0, default: 0.7 arousal_threshold: number; // 0.0-1.0, default: 0.4 } ``` **Tuning Guidelines**: - **Increase emotional_influence (0.4-0.7)**: More emotion-driven decisions - **Decrease emotional_influence (0.1-0.2)**: More rational, logical decisions - **Higher somatic_marker_strength**: Stronger gut feeling influence - **Adjust valence_sensitivity**: How much positive/negative emotions matter ### 6. Metacognitive Monitoring **Purpose**: Monitors thinking processes for quality, coherence, and biases. **Monitoring Dimensions**: - **Confidence**: How certain the system is about its conclusions - **Coherence**: Logical consistency of reasoning steps - **Completeness**: Whether all relevant aspects were considered - **Bias Detection**: Identification of cognitive biases **Configuration Parameters**: ```typescript interface MetacognitionConfig { confidence_threshold: number; // 0.0-1.0, default: 0.6 coherence_weight: number; // 0.0-1.0, default: 0.4 bias_detection: boolean; // Default: true self_correction: boolean; // Default: true monitoring_depth: number; // 1-5, default: 3 } ``` **Common Biases Detected**: - **Confirmation Bias**: Seeking information that confirms existing beliefs - **Anchoring Bias**: Over-relying on first information received - **Availability Heuristic**: Overestimating likelihood of memorable events - **Representativeness Heuristic**: Judging probability by similarity to mental prototypes - **Overconfidence Bias**: Overestimating accuracy of beliefs ### 7. Predictive Processing Framework **Purpose**: Implements predictive coding theory where the brain constantly generates predictions and updates models based on errors. **Key Functions**: - **Prediction Generation**: Creates expectations based on context - **Error Computation**: Measures difference between predictions and reality - **Model Updating**: Adjusts internal models based on prediction errors - **Bayesian Integration**: Combines prior beliefs with new evidence **Configuration Parameters**: ```typescript interface PredictiveConfig { prediction_strength: number; // 0.0-1.0, default: 0.6 error_threshold: number; // 0.0-1.0, default: 0.3 learning_rate: number; // 0.0-1.0, default: 0.1 bayesian_updating: boolean; // Default: true hierarchical_levels: number; // 1-5, default: 3 } ``` ### 8. Stochastic Neural Processing **Purpose**: Adds biological-like noise and variability to prevent deterministic thinking patterns. **Key Functions**: - **Gaussian Noise Addition**: Simulates neural variability - **Stochastic Resonance**: Uses noise to enhance weak signal detection - **Probabilistic Sampling**: Samples from probability distributions - **Temperature Control**: Adjusts randomness levels **Configuration Parameters**: ```typescript interface StochasticConfig { noise_level: number; // 0.0-1.0, default: 0.1 temperature: number; // 0.0-2.0, default: 0.7 stochastic_resonance: boolean; // Default: true sampling_method: "deterministic" | "probabilistic"; // Default: "probabilistic" } ``` ## Processing Modes Deep Dive ### Intuitive Mode Configuration ```typescript const intuitiveConfig = { sensory: { attention_threshold: 0.4 }, working_memory: { capacity: 5, decay_rate: 0.15 }, dual_process: { mode_bias: "system1", conflict_threshold: 0.8 }, stochastic: { temperature: 0.3, noise_level: 0.05 }, metacognition: { monitoring_depth: 1 }, }; ``` ### Deliberative Mode Configuration ```typescript const deliberativeConfig = { sensory: { attention_threshold: 0.2 }, working_memory: { capacity: 9, decay_rate: 0.05 }, dual_process: { mode_bias: "system2", conflict_threshold: 0.4 }, stochastic: { temperature: 0.5, noise_level: 0.08 }, metacognition: { monitoring_depth: 5 }, }; ``` ### Creative Mode Configuration ```typescript const creativeConfig = { sensory: { attention_threshold: 0.3 }, working_memory: { capacity: 8, decay_rate: 0.12 }, dual_process: { mode_bias: "balanced", conflict_threshold: 0.6 }, stochastic: { temperature: 1.2, noise_level: 0.15 }, emotional: { emotional_influence: 0.5 }, metacognition: { monitoring_depth: 2 }, }; ``` ### Analytical Mode Configuration ```typescript const analyticalConfig = { sensory: { attention_threshold: 0.15 }, working_memory: { capacity: 10, decay_rate: 0.03 }, dual_process: { mode_bias: "system2", conflict_threshold: 0.3 }, stochastic: { temperature: 0.4, noise_level: 0.06 }, emotional: { emotional_influence: 0.1 }, metacognition: { monitoring_depth: 4 }, }; ``` ## Performance Tuning Guide ### Latency Optimization **For Faster Responses**: 1. Reduce `max_depth` parameter (5-8 instead of 10-15) 2. Increase `attention_threshold` (0.4-0.6) 3. Use intuitive mode for simple queries 4. Reduce `working_memory.capacity` (5-6) 5. Lower `temperature` (0.3-0.5) 6. Disable unnecessary components (emotion, metacognition) **Configuration Example**: ```typescript const fastConfig = { max_depth: 6, mode: "intuitive", temperature: 0.4, enable_emotion: false, enable_metacognition: false, sensory: { attention_threshold: 0.5 }, working_memory: { capacity: 5 }, }; ``` ### Quality Optimization **For Higher Quality Responses**: 1. Increase `max_depth` parameter (12-20) 2. Decrease `attention_threshold` (0.1-0.3) 3. Use deliberative or analytical mode 4. Increase `working_memory.capacity` (8-12) 5. Enable all cognitive components 6. Increase `metacognition.monitoring_depth` (4-5) **Configuration Example**: ```typescript const qualityConfig = { max_depth: 15, mode: "deliberative", temperature: 0.6, enable_emotion: true, enable_metacognition: true, sensory: { attention_threshold: 0.2 }, working_memory: { capacity: 10 }, metacognition: { monitoring_depth: 5 }, }; ``` ### Memory Optimization **For Memory-Intensive Applications**: 1. Increase memory capacities 2. Lower decay rates 3. Enable consolidation 4. Use appropriate importance thresholds 5. Optimize retrieval parameters **Configuration Example**: ```typescript const memoryConfig = { episodic_memory: { capacity: 50000, decay_rate: 0.005, retrieval_threshold: 0.25, }, semantic_memory: { embedding_dimension: 1024, clustering_threshold: 0.8, }, consolidation: { consolidation_interval: 1800000, // 30 minutes pattern_threshold: 0.5, importance_threshold: 0.4, }, }; ``` ## Domain-Specific Tuning ### Scientific/Technical Domains ```typescript const scientificConfig = { mode: "analytical", temperature: 0.4, emotional_influence: 0.1, metacognition: { monitoring_depth: 5, bias_detection: true, }, working_memory: { capacity: 12 }, max_depth: 20, }; ``` ### Creative/Artistic Domains ```typescript const creativeConfig = { mode: "creative", temperature: 1.1, emotional_influence: 0.6, stochastic: { noise_level: 0.15, stochastic_resonance: true, }, working_memory: { capacity: 8 }, max_depth: 12, }; ``` ### Business/Strategic Domains ```typescript const businessConfig = { mode: "balanced", temperature: 0.7, emotional_influence: 0.4, metacognition: { monitoring_depth: 4, bias_detection: true, }, predictive: { prediction_strength: 0.7, bayesian_updating: true, }, }; ``` ## Monitoring and Debugging ### Performance Metrics **Response Time Metrics**: - Component processing times - Total pipeline latency - Memory operation times - Consolidation processing time **Quality Metrics**: - Confidence scores - Coherence assessments - Bias detection rates - Memory retrieval accuracy **Resource Metrics**: - Memory usage per session - CPU utilization - Storage requirements - Concurrent session capacity ### Debug Configuration ```typescript const debugConfig = { logging: { level: "DEBUG", component_timing: true, memory_operations: true, reasoning_steps: true, }, monitoring: { performance_tracking: true, quality_assessment: true, bias_logging: true, }, visualization: { reasoning_graphs: true, memory_networks: true, emotional_states: true, }, }; ``` ### Common Issues and Solutions **Issue**: Slow response times **Solutions**: - Reduce max_depth - Increase attention_threshold - Use faster processing modes - Disable unnecessary components **Issue**: Low-quality responses **Solutions**: - Increase max_depth - Enable metacognitive monitoring - Use deliberative mode - Lower attention_threshold **Issue**: Memory not persisting **Solutions**: - Check consolidation settings - Verify importance thresholds - Ensure proper memory storage calls - Review decay rate settings **Issue**: Inconsistent responses **Solutions**: - Lower temperature - Reduce noise_level - Use deterministic sampling - Increase confidence thresholds ## Advanced Configuration ### Custom Processing Pipelines You can create custom processing pipelines by selectively enabling/disabling components: ```typescript const customPipeline = { components: { sensory_processor: true, working_memory: true, dual_process: true, memory_system: true, emotional_processor: false, // Disabled for pure logical reasoning metacognition: true, predictive_processor: false, // Disabled for faster processing stochastic_processor: true, }, flow_control: { parallel_processing: true, early_termination: true, adaptive_depth: true, }, }; ``` ### Multi-Agent Configurations For multi-agent scenarios, configure different cognitive profiles: ```typescript const agentProfiles = { analyst: { mode: "analytical", emotional_influence: 0.1, metacognition_depth: 5, }, creative: { mode: "creative", temperature: 1.2, emotional_influence: 0.6, }, mediator: { mode: "balanced", emotional_influence: 0.5, social_cognition: true, }, }; ``` This cognitive architecture provides a flexible, biologically-inspired framework for human-like AI reasoning. By understanding and tuning these components, you can create AI systems that think more naturally and effectively across diverse domains and use cases. ## Systematic Thinking Architecture ### Overview The systematic thinking layer adds structured problem-solving capabilities to the cognitive architecture, implementing multiple thinking frameworks that can be automatically selected based on problem characteristics. This layer operates independently of accumulated memories, enabling real-time systematic analysis. ### Architecture Components ```mermaid graph TB Input[Problem Input] --> PA[Problem Analyzer] PA --> PS[Problem Structure] PS --> DFS[Dynamic Framework Selector] DFS --> FR[Framework Recommendation] FR --> STO[Systematic Thinking Orchestrator] STO --> PRP[Parallel Reasoning Processor] PRP --> AS[Analytical Stream] PRP --> CS[Creative Stream] PRP --> CRS[Critical Stream] PRP --> SS[Synthetic Stream] AS --> SSM[Stream Synchronization Manager] CS --> SSM CRS --> SSM SS --> SSM SSM --> CR[Conflict Resolution] CR --> RTPD[Real-Time Problem Decomposer] RTPD --> SAR[Systematic Analysis Result] DFS -.-> TF1[Scientific Method] DFS -.-> TF2[Design Thinking] DFS -.-> TF3[Systems Thinking] DFS -.-> TF4[Critical Thinking] DFS -.-> TF5[Creative Problem Solving] DFS -.-> TF6[Root Cause Analysis] DFS -.-> TF7[First Principles] DFS -.-> TF8[Scenario Planning] ``` ### Core Components #### 1. Problem Analyzer Analyzes incoming problems to extract key characteristics: - **Complexity Assessment**: Estimates problem complexity (0-1 scale) - **Uncertainty Quantification**: Measures problem uncertainty levels - **Domain Classification**: Identifies problem domain (technology, business, science, etc.) - **Constraint Extraction**: Identifies time, resource, and technical constraints - **Stakeholder Identification**: Maps relevant stakeholders and their interests ```typescript interface ProblemCharacteristics { complexity: number; // 0-1 scale uncertainty: number; // 0-1 scale domain: string; constraints: string[]; stakeholders: string[]; time_sensitivity: number; resource_requirements: string[]; } ``` #### 2. Dynamic Framework Selector Automatically selects the most appropriate thinking framework based on problem characteristics: ```typescript interface FrameworkSelection { framework: ThinkingFramework; confidence: number; reasoning: string; alternatives: AlternativeFramework[]; } ``` **Framework Selection Logic**: - **Scientific Method**: High uncertainty + empirical validation needed - **Design Thinking**: User-centered problems + iteration required - **Systems Thinking**: High complexity + multiple stakeholders - **Critical Thinking**: Evidence evaluation + argument analysis - **Creative Problem Solving**: Innovation required + open-ended - **Root Cause Analysis**: Problem diagnosis + causal relationships - **First Principles**: Fundamental understanding + breakthrough needed - **Scenario Planning**: Future uncertainty + strategic planning #### 3. Parallel Reasoning Processor Executes multiple reasoning streams simultaneously: - **Analytical Stream**: Logical, data-driven analysis - **Creative Stream**: Innovative, divergent thinking - **Critical Stream**: Skeptical evaluation and risk assessment - **Synthetic Stream**: Integration and pattern recognition Each stream operates independently and contributes unique perspectives to the final solution. #### 4. Stream Synchronization Manager Coordinates parallel streams and resolves conflicts: ```typescript interface StreamCoordination { synchronization_points: SyncPoint[]; conflict_resolutions: ConflictResolution[]; consensus_building: ConsensusStrategy; quality_assurance: QualityMetrics; } ``` #### 5. Real-Time Problem Decomposer Breaks down complex problems into manageable components: - **Hierarchical Decomposition**: Tree-like problem breakdown - **Dependency Mapping**: Identifies relationships between sub-problems - **Priority Analysis**: Ranks sub-problems by importance and urgency - **Critical Path Identification**: Finds bottlenecks and key dependencies ### Integration with Core Architecture The systematic thinking layer integrates seamlessly with the core cognitive architecture: #### Memory Integration - **Framework Learning**: System learns which frameworks work best for different problem types - **Pattern Recognition**: Identifies recurring problem patterns and optimal approaches - **Experience Storage**: Stores systematic thinking results for future reference - **Context Retrieval**: Leverages past systematic analyses for similar problems #### Dual-Process Integration - **System 1 Enhancement**: Intuitive framework selection based on pattern recognition - **System 2 Activation**: Deliberative systematic analysis for complex problems - **Hybrid Processing**: Combines intuitive insights with systematic analysis - **Metacognitive Monitoring**: Evaluates systematic thinking quality and adjusts approach #### Emotional Processing Integration - **Stakeholder Empathy**: Considers emotional impact on different stakeholders - **Decision Confidence**: Emotional assessment of systematic thinking results - **Bias Detection**: Identifies emotional biases in systematic analysis - **Motivation Analysis**: Understands underlying motivations in problem context ### Configuration and Tuning #### Framework Selection Tuning ```typescript const systematicThinkingConfig = { framework_selection: { auto_selection_threshold: 0.7, // Confidence threshold for automatic selection fallback_framework: "systems_thinking", // Default when uncertain multi_framework_mode: true, // Use multiple frameworks simultaneously learning_enabled: true, // Learn from framework effectiveness }, parallel_processing: { max_streams: 4, // Maximum concurrent reasoning streams synchronization_interval: 500, // ms between sync points conflict_resolution_strategy: "weighted_consensus", quality_threshold: 0.6, // Minimum quality for stream results }, problem_decomposition: { max_depth: 4, // Maximum decomposition levels min_complexity_threshold: 0.5, // Minimum complexity for decomposition dependency_analysis_enabled: true, critical_path_optimization: true, }, }; ``` #### Performance Optimization **For Speed**: ```typescript const fastSystematicConfig = { framework_selection: { auto_selection_threshold: 0.5 }, parallel_processing: { max_streams: 2 }, problem_decomposition: { max_depth: 2 }, quality_vs_speed_tradeoff: "speed", }; ``` **For Quality**: ```typescript const qualitySystematicConfig = { framework_selection: { auto_selection_threshold: 0.8 }, parallel_processing: { max_streams: 6 }, problem_decomposition: { max_depth: 6 }, quality_vs_speed_tradeoff: "quality", }; ``` ### Domain-Specific Systematic Thinking #### Technology Domain ```typescript const techSystematicConfig = { preferred_frameworks: [ "first_principles", "systems_thinking", "root_cause_analysis", ], problem_characteristics: { complexity_weight: 0.8, technical_constraints_priority: "high", scalability_considerations: true, }, decomposition_strategy: "functional", }; ``` #### Business Domain ```typescript const businessSystematicConfig = { preferred_frameworks: [ "design_thinking", "scenario_planning", "systems_thinking", ], problem_characteristics: { stakeholder_analysis_depth: "high", market_considerations: true, risk_assessment_priority: "high", }, decomposition_strategy: "stakeholder", }; ``` #### Research Domain ```typescript const researchSystematicConfig = { preferred_frameworks: [ "scientific_method", "critical_thinking", "first_principles", ], problem_characteristics: { uncertainty_tolerance: "high", evidence_requirements: "strict", hypothesis_generation: true, }, decomposition_strategy: "temporal", }; ``` ### Best Practices #### 1. Framework Selection - **Trust the Auto-Selection**: The system learns from experience and improves over time - **Override When Necessary**: Manual framework selection for specialized domains - **Combine Frameworks**: Use multiple frameworks for complex, multi-faceted problems - **Monitor Effectiveness**: Track which frameworks work best for your use cases #### 2. Parallel Processing - **Balance Streams**: Ensure all reasoning streams contribute meaningfully - **Resolve Conflicts Early**: Address contradictions between streams promptly - **Synthesize Insights**: Combine unique insights from different streams - **Quality Control**: Maintain quality standards across all streams #### 3. Problem Decomposition - **Appropriate Depth**: Don't over-decompose simple problems - **Dependency Awareness**: Always consider relationships between sub-problems - **Priority Focus**: Start with high-priority, high-impact components - **Iterative Refinement**: Refine decomposition as understanding improves #### 4. Integration with Core Systems - **Memory Utilization**: Leverage past systematic analyses for similar problems - **Emotional Consideration**: Include stakeholder emotions in systematic analysis - **Metacognitive Monitoring**: Continuously evaluate systematic thinking quality - **Adaptive Learning**: Allow the system to learn and improve from experience The systematic thinking architecture provides a powerful framework for structured problem-solving that complements the core cognitive architecture's intuitive and deliberative processes. By combining multiple thinking frameworks with parallel processing and real-time problem decomposition, it enables sophisticated analysis of complex problems while maintaining the flexibility and adaptability of human-like reasoning.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/keyurgolani/ThoughtMcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server