Skip to main content
Glama

mcp-jenkins

MCP Jenkins

PyPI Version PyPI - Downloads PyPI Downloads smithery badge test License

The Model Context Protocol (MCP) is an open-source implementation that bridges Jenkins with AI language models following Anthropic's MCP specification. This project enables secure, contextual AI interactions with Jenkins tools while maintaining data privacy and security.

Cursor Demo

cursor demo

Setup Guide

Installation

Choose one of these installation methods:

# Using uv (recommended) pip install uv uvx mcp-jenkins # Using pip pip install mcp-jenkins # Using Smithery npx -y @smithery/cli@latest install @lanbaoshen/mcp-jenkins --client claude

Configuration and Usage

Cursor

  1. Open Cursor Settings

  2. Navigate to MCP

  3. Click + Add new global MCP server

This will create or edit the ~/.cursor/mcp.json file with your MCP server configuration.

{ "mcpServers": { "mcp-jenkins": { "command": "uvx", "args": [ "mcp-jenkins", "--jenkins-url=xxx", "--jenkins-username=xxx", "--jenkins-password=xxx" ] } } }

line arguments

# Stdio Mode uvx mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx # SSE Mode uvx mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx --transport sse --port 9887

AutoGen

Install autogen:

pip install "autogen-ext[azure,ollama,openai,mcp]" autogen-chat

Run python scripts:

import asyncio from autogen_ext.tools.mcp import StdioMcpToolAdapter, StdioServerParams from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.ui import Console from autogen_core import CancellationToken async def main() -> None: # Create server params for the remote MCP service server_params = StdioServerParams( command='uvx', args=[ 'mcp-jenkins', '--jenkins-username', 'xxx', '--jenkins-password', 'xxx', '--jenkins-url', 'xxx' ], ) # Get the translation tool from the server adapter = await StdioMcpToolAdapter.from_server_params(server_params, 'get_all_jobs') # Create an agent that can use the translation tool agent = AssistantAgent( name='jenkins_assistant', model_client=[Replace_with_your_model_client], tools=[adapter], ) # Let the agent translate some text await Console( agent.run_stream(task='Get all jobs', cancellation_token=CancellationToken()) ) if __name__ == "__main__": asyncio.run(main())

Available Tools

Tool

Description

get_all_jobs

Get all jobs

get_job_config

Get job config

search_jobs

Search job by specific field

get_running_builds

Get running builds

get_build_info

Get build info

get_job_info

Get job info

build_job

Build a job with param

get_build_logs

Get build logs

get_all_nodes

Get nodes

get_node_config

Get the config of node

get_all_queue_items

Get all queue items

get_queue_item

Get queue item info

cancel_queue_item

Cancel queue item

Development & Debugging

# Using MCP Inspector # For installed package npx @modelcontextprotocol/inspector uvx mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx # For local development version npx @modelcontextprotocol/inspector uv --directory /path/to/your/mcp-jenkins run mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx

Pre-Commit Hook

# Install Dependency uv sync --all-extras --dev pre-commit install # Manually execute pre-commit run --all-files

UT

# Install Dependency uv sync --all-extras --dev # Execute UT uv run pytest --cov=mcp_jenkins

License

Licensed under MIT - see LICENSE file. This is not an official Jenkins product.

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

The Model Context Protocol (MCP) Jenkins integration is an open-source implementation that bridges Jenkins with AI language models following Anthropic's MCP specification. This project enables secure, contextual AI interactions with Jenkins tools while maintaining data privacy and security.

  1. Cursor Demo
    1. Setup Guide
      1. Installation
      2. Configuration and Usage
    2. Available Tools
      1. Development & Debugging
        1. Pre-Commit Hook
        2. UT
      2. License

        Related MCP Servers

        • -
          security
          F
          license
          -
          quality
          Facilitates interaction and context sharing between AI models using the standardized Model Context Protocol (MCP) with features like interoperability, scalability, security, and flexibility across diverse AI systems.
          Last updated -
          1
        • A
          security
          A
          license
          A
          quality
          Model Context Protocol (MCP) is a new, standardized protocol for managing context between large language models (LLMs) and external systems. In this repository, we provide an installer as well as an MCP Server for Upstash Developer API's.
          Last updated -
          473
          49
          MIT License
          • Linux
          • Apple
        • -
          security
          A
          license
          -
          quality
          An open-source implementation of the Model Context Protocol (MCP) that bridges AI agents with enterprise systems, enabling secure access to real-world data and capabilities.
          Last updated -
          3
          Apache 2.0
        • A
          security
          F
          license
          A
          quality
          An all-in-one Model Context Protocol (MCP) server that connects your coding AI to numerous databases, data warehouses, data pipelines, and cloud services, streamlining development workflow through seamless integrations.
          Last updated -
          3
          • Apple
          • Linux

        View all related MCP servers

        MCP directory API

        We provide all the information about MCP servers via our MCP API.

        curl -X GET 'https://glama.ai/api/mcp/v1/servers/lanbaoshen/mcp-jenkins'

        If you have feedback or need assistance with the MCP directory API, please join our Discord server