Skip to main content
Glama

GPT Image MCP Server

by lansespirit

GPT Image MCP Server

Empowering Universal Image Generation for AI Chatbots

Traditional AI chatbot interfaces are limited to text-only interactions, regardless of how powerful their underlying language models are. GPT Image MCP Server bridges this gap by enabling any LLM-powered chatbot client to generate professional-quality images through the standardized Model Context Protocol (MCP).

Whether you're using Claude Desktop, a custom ChatGPT interface, Llama-based applications, or any other LLM client that supports MCP, this server democratizes access to OpenAI's state-of-the-art gpt-image-1 model, transforming text-only conversations into rich, visual experiences.

📦 Package Manager: This project uses UV for fast, reliable Python package management. UV provides better dependency resolution, faster installs, and proper environment isolation compared to traditional pip/venv workflows.

Why This Matters

The AI ecosystem has evolved to include powerful language models from multiple providers (OpenAI, Anthropic, Meta, Google, etc.), but image generation capabilities remain fragmented and platform-specific. This creates a significant gap:

  • 🚫 Limited Access: Only certain platforms offer built-in image generation
  • 🔒 Vendor Lock-in: Image capabilities tied to specific LLM providers
  • ⚡ Poor Integration: Switching between text and image tools breaks workflow
  • 🛠️ Complex Setup: Each client needs custom integrations

GPT Image MCP Server solves this by providing:

  • 🌐 Universal Compatibility: Works with any MCP-enabled LLM client
  • 🔄 Seamless Integration: No context switching or workflow interruption
  • ⚡ Standardized Protocol: One server, multiple client support
  • 🎨 Professional Quality: Access to OpenAI's latest image generation technology

Visual Showcase

Real-World Usage

Claude Desktop with GPT Image MCP Claude Desktop seamlessly generating images through MCP integration

Generated Examples

High-quality images generated through the MCP server, demonstrating professional-grade output

Use Cases & Applications

🎯 Content Creation Workflows

  • Bloggers & Writers: Generate custom illustrations directly in writing tools
  • Social Media Managers: Create platform-specific graphics without leaving chat interfaces
  • Marketing Teams: Rapid prototyping of visual concepts during brainstorming sessions
  • Educators: Generate teaching materials and visual aids on-demand

🚀 Development & Design

  • UI/UX Designers: Quick mockup generation during design discussions
  • Frontend Developers: Placeholder and concept images within development environments
  • Technical Writers: Custom diagrams and illustrations for documentation
  • Product Managers: Visual concept communication in any LLM-powered tool

🏢 Enterprise Integration

  • Customer Support: Generate visual explanations and guides
  • Sales Teams: Custom presentation materials tailored to client needs
  • Training Programs: Visual learning materials created in conversational interfaces
  • Internal Tools: Add image generation to existing LLM-powered applications

🎨 Creative Industries

  • Game Developers: Concept art and asset ideation
  • Film & Media: Storyboard and concept visualization
  • Architecture: Quick visual references and mood boards
  • Advertising: Campaign concept development

Key Advantage: Unlike platform-specific solutions, this universal approach means your image generation capabilities move with you across different tools and workflows, eliminating vendor lock-in and maximizing workflow efficiency.

Features

🎨 Image Generation

  • Text-to-Image: Generate high-quality images from text descriptions using gpt-image-1
  • Image Editing: Edit existing images with text instructions
  • Multiple Formats: Support for PNG, JPEG, and WebP output formats
  • Quality Control: Auto, high, medium, and low quality settings
  • Background Control: Transparent, opaque, or auto background options

🔗 MCP Integration

  • FastMCP Framework: Built with the latest MCP Python SDK
  • Multiple Transports: STDIO, HTTP, and SSE transport support
  • Structured Output: Validated tool responses with proper schemas
  • Resource Access: MCP resources for image retrieval and management
  • Prompt Templates: 10+ built-in templates for common use cases

💾 Storage & Caching

  • Local Storage: Organized directory structure with metadata
  • URL-based Access: Transport-aware URL generation for images
  • Dual Access: Immediate base64 data + persistent resource URIs
  • Smart Caching: Memory-based caching with TTL and Redis support
  • Auto Cleanup: Configurable file retention policies

🚀 Production Deployment

  • Docker Support: Production-ready Docker containers
  • Multi-Transport: STDIO for Claude Desktop, HTTP for web deployment
  • Reverse Proxy: Nginx configuration with rate limiting
  • Monitoring: Grafana and Prometheus integration
  • SSL/TLS: Automatic certificate management with Certbot

🛠️ Development Features

  • Type Safety: Full type hints with Pydantic models
  • Error Handling: Comprehensive error handling and logging
  • Configuration: Environment-based configuration management
  • Testing: Pytest-based test suite with async support
  • Dev Tools: Hot reload, Redis Commander, debug logging

Quick Start

Prerequisites

Installation

  1. Clone and setup:
    git clone <repository-url> cd gpt-image-mcp uv sync

    Note: This project uses UV for fast, reliable Python package management. UV provides better dependency resolution and faster installs compared to pip.

  2. Configure environment:
    cp .env.example .env # Edit .env and add your OpenAI API key
  3. Test the setup:
    uv run python scripts/dev.py setup uv run python scripts/dev.py test

Running the Server

Development Mode
# HTTP transport for web development and testing ./run.sh dev # HTTP transport with development tools (Redis Commander) ./run.sh dev --tools # STDIO transport for Claude Desktop integration ./run.sh stdio # Production deployment with monitoring ./run.sh prod
Manual Execution
# STDIO transport (default) - for Claude Desktop uv run python -m gpt_image_mcp.server # HTTP transport - for web deployment uv run python -m gpt_image_mcp.server --transport streamable-http --port 3001 # SSE transport - for real-time applications uv run python -m gpt_image_mcp.server --transport sse --port 8080 # With custom configuration uv run python -m gpt_image_mcp.server --config /path/to/.env --log-level DEBUG # Enable CORS for web development uv run python -m gpt_image_mcp.server --transport streamable-http --cors
Command Line Options
uv run python -m gpt_image_mcp.server --help GPT Image MCP Server - Generate and edit images using OpenAI's gpt-image-1 model options: --config PATH Path to configuration file (.env format) --log-level LEVEL Set logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) --transport TYPE Transport method (stdio, sse, streamable-http) --port PORT Port for HTTP transports (default: 3001) --host HOST Host address for HTTP transports (default: 127.0.0.1) --cors Enable CORS for web deployments --version Show version information --help Show help message Examples: # Claude Desktop integration uv run python -m gpt_image_mcp.server # Web deployment with Redis cache uv run python -m gpt_image_mcp.server --transport streamable-http --port 3001 # Development with debug logging and tools uv run python -m gpt_image_mcp.server --log-level DEBUG --cors
MCP Client Integration

This server works with any MCP-compatible chatbot client. Here are configuration examples:

Claude Desktop (Anthropic)
{ "mcpServers": { "gpt-image-mcp": { "command": "uv", "args": [ "--directory", "/path/to/gpt-image-mcp", "run", "gpt-image-mcp" ], "env": { "OPENAI_API_KEY": "your-api-key-here" } } } }
Continue.dev (VS Code Extension)
{ "mcpServers": { "gpt-image": { "command": "uv", "args": ["--directory", "/path/to/gpt-image-mcp", "run", "gpt-image-mcp"], "env": { "OPENAI_API_KEY": "your-api-key-here" } } } }
Custom MCP Clients

For other MCP-compatible applications, use the standard MCP STDIO transport:

uv run python -m gpt_image_mcp.server

Universal Compatibility: This server follows the standard MCP protocol, ensuring compatibility with current and future MCP-enabled clients across the AI ecosystem.

Usage Examples

Basic Image Generation

# Use via MCP client result = await session.call_tool( "generate_image", arguments={ "prompt": "A beautiful sunset over mountains, digital art style", "quality": "high", "size": "1536x1024", "style": "vivid" } )

Using Prompt Templates

# Get optimized prompt for social media prompt_result = await session.get_prompt( "social_media_prompt", arguments={ "platform": "instagram", "content_type": "product announcement", "brand_style": "modern minimalist" } )

Accessing Generated Images

# Access via resource URI image_data = await session.read_resource("generated-images://img_20250630143022_abc123") # Check recent images history = await session.read_resource("image-history://recent?limit=5") # Storage statistics stats = await session.read_resource("storage-stats://overview")

Available Tools

generate_image

Generate images from text descriptions.

Parameters:

  • prompt (required): Text description of desired image
  • quality: "auto" | "high" | "medium" | "low" (default: "auto")
  • size: "1024x1024" | "1536x1024" | "1024x1536" (default: "1536x1024")
  • style: "vivid" | "natural" (default: "vivid")
  • output_format: "png" | "jpeg" | "webp" (default: "png")
  • background: "auto" | "transparent" | "opaque" (default: "auto")

edit_image

Edit existing images with text instructions.

Parameters:

  • image_data (required): Base64 encoded image or data URL
  • prompt (required): Edit instructions
  • mask_data: Optional mask for targeted editing
  • size, quality, output_format: Same as generate_image

Available Resources

  • generated-images://{image_id} - Access specific generated images
  • image-history://recent - Browse recent generation history
  • storage-stats://overview - Storage usage and statistics
  • model-info://gpt-image-1 - Model capabilities and pricing

Prompt Templates

Built-in templates for common use cases:

  • Creative Image: Artistic image generation
  • Product Photography: Commercial product images
  • Social Media Graphics: Platform-optimized posts
  • Blog Headers: Article header images
  • OG Images: Social media preview images
  • Hero Banners: Website hero sections
  • Email Headers: Newsletter headers
  • Video Thumbnails: YouTube/video thumbnails
  • Infographics: Data visualization images
  • Artistic Style: Specific art movement styles

Configuration

Configure via environment variables or .env file:

# ============================================================================= # OpenAI Configuration (Required) # ============================================================================= OPENAI__API_KEY=sk-your-api-key-here OPENAI__BASE_URL=https://api.openai.com/v1 OPENAI__ORGANIZATION=org-your-org-id OPENAI__TIMEOUT=300.0 OPENAI__MAX_RETRIES=3 # ============================================================================= # Image Generation Settings # ============================================================================= IMAGES__DEFAULT_MODEL=gpt-image-1 IMAGES__DEFAULT_QUALITY=auto IMAGES__DEFAULT_SIZE=1536x1024 IMAGES__DEFAULT_STYLE=vivid IMAGES__DEFAULT_MODERATION=auto IMAGES__DEFAULT_OUTPUT_FORMAT=png # Base URL for image hosting (e.g., https://cdn.example.com for nginx/CDN) IMAGES__BASE_HOST= # ============================================================================= # Server Configuration # ============================================================================= SERVER__NAME=GPT Image MCP Server SERVER__VERSION=0.1.0 SERVER__PORT=3001 SERVER__HOST=127.0.0.1 SERVER__LOG_LEVEL=INFO SERVER__RATE_LIMIT_RPM=50 # ============================================================================= # Storage Configuration # ============================================================================= STORAGE__BASE_PATH=./storage STORAGE__RETENTION_DAYS=30 STORAGE__MAX_SIZE_GB=10.0 STORAGE__CLEANUP_INTERVAL_HOURS=24 # ============================================================================= # Cache Configuration # ============================================================================= CACHE__ENABLED=true CACHE__TTL_HOURS=24 CACHE__BACKEND=memory CACHE__MAX_SIZE_MB=500 # CACHE__REDIS_URL=redis://localhost:6379

Deployment

Production Deployment

The server supports production deployment with Docker, monitoring, and reverse proxy:

# Quick production deployment ./run.sh prod # Manual Docker Compose deployment docker-compose -f docker-compose.prod.yml up -d

Production Stack includes:

  • GPT Image MCP Server: Main application container
  • Redis: Caching and session storage
  • Nginx: Reverse proxy with rate limiting (configured separately)
  • Prometheus: Metrics collection
  • Grafana: Monitoring dashboards

Access Points:

  • Main Service: http://localhost:3001 (behind proxy)
  • Grafana Dashboard: http://localhost:3000
  • Prometheus: http://localhost:9090 (localhost only)

VPS Deployment

For VPS deployment with SSL, monitoring, and production hardening:

# Download deployment script wget https://raw.githubusercontent.com/your-repo/gpt-image-mcp/main/deploy/vps-setup.sh chmod +x vps-setup.sh ./vps-setup.sh

Features included:

  • Docker containerization
  • Nginx reverse proxy with SSL
  • Automatic certificate management (Certbot)
  • System monitoring and logging
  • Firewall configuration
  • Automatic backups

See VPS Deployment Guide for detailed instructions.

Docker Configuration

Available Docker Compose profiles:

# Development with HTTP transport docker-compose -f docker-compose.dev.yml up # Development with Redis Commander docker-compose -f docker-compose.dev.yml --profile tools up # STDIO transport for desktop integration docker-compose -f docker-compose.dev.yml --profile stdio up # Production with monitoring docker-compose -f docker-compose.prod.yml up -d

Development

Development Tools

# Setup development environment uv run python scripts/dev.py setup # Run tests uv run python scripts/dev.py test # Code quality and formatting uv run python scripts/dev.py lint # Check code quality with ruff and mypy uv run python scripts/dev.py format # Format code with black # Run example client uv run python scripts/dev.py example # Development server with auto-reload ./run.sh dev --tools # Includes Redis Commander UI

Testing

# Run full test suite ./run.sh test # Run specific test categories uv run pytest tests/unit/ # Unit tests only uv run pytest tests/integration/ # Integration tests only uv run pytest -v --cov=gpt_image_mcp # With coverage

Architecture

The server follows a modular, production-ready architecture:

Core Components:

  • Server Layer (server.py): FastMCP-based MCP server with multi-transport support
  • Configuration (config/): Environment-based settings management with validation
  • Tool Layer (tools/): Image generation and editing capabilities
  • Resource Layer (resources/): MCP resources for data access and model registry
  • Storage Manager (storage/): Organized local image storage with cleanup
  • Cache Manager (utils/cache.py): Memory and Redis-based caching system

Infrastructure:

  • OpenAI Integration (utils/openai_client.py): Robust API client with retry logic
  • Prompt Templates (prompts/): Template system for optimized prompts
  • Type System (types/): Pydantic models for type safety
  • Validation (utils/validators.py): Input validation and sanitization

Deployment:

  • Docker Support: Development and production containers
  • Multi-Transport: STDIO, HTTP, SSE transport layers
  • Monitoring: Prometheus metrics and Grafana dashboards
  • Reverse Proxy: Nginx configuration with SSL and rate limiting

Cost Estimation

The server provides cost estimation for operations:

  • Text Input: ~$5 per 1M tokens
  • Image Output: $40 per 1M tokens (1750 tokens per image)
  • Typical Cost: ~$0.07 per image generation

Error Handling

Comprehensive error handling includes:

  • API rate limiting and retries
  • Invalid parameter validation
  • Storage error recovery
  • Cache failure fallbacks
  • Detailed error logging

Security

Security features include:

  • OpenAI API key protection
  • Input validation and sanitization
  • File system access controls
  • Rate limiting protection
  • No credential exposure in logs

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Submit a pull request

Support

For issues and questions:

  1. Check the troubleshooting guide
  2. Review common issues
  3. Open an issue on GitHub

Built with ❤️ using the Model Context Protocol and OpenAI's gpt-image-1

The Future of AI Integration

The Model Context Protocol represents a paradigm shift towards standardized AI tool integration. As more LLM clients adopt MCP support, servers like this one become increasingly valuable by providing universal capabilities across the entire ecosystem.

Current MCP Adoption:

  • Claude Desktop (Anthropic) - Full MCP support
  • Continue.dev - VS Code extension with MCP integration
  • Zed Editor - Built-in MCP support for coding workflows
  • 🚀 Growing Ecosystem - New clients adopting MCP regularly

Vision: A future where AI capabilities are modular, interoperable, and user-controlled rather than locked to specific platforms.


🌟 Building the Universal AI Ecosystem

Democratizing advanced AI capabilities across all platforms through the power of the Model Context Protocol. One server, infinite possibilities.

Related MCP Servers

  • -
    security
    A
    license
    -
    quality
    An MCP tool server that enables generating and editing images through OpenAI's image models, supporting text-to-image generation and advanced image editing (inpainting, outpainting) across various MCP-compatible clients.
    Last updated -
    31
    TypeScript
    MIT License
    • Linux
    • Apple
  • A
    security
    F
    license
    A
    quality
    An MCP (Model Context Protocol) server that allows generating, editing, and creating variations of images using OpenAI's DALL-E APIs.
    Last updated -
    1
    TypeScript
  • -
    security
    A
    license
    -
    quality
    Provides tools for generating and editing images using OpenAI's gpt-image-1 model via an MCP interface, enabling AI assistants to create and modify images based on text prompts.
    Last updated -
    10
    Python
    Apache 2.0
    • Linux
    • Apple
  • A
    security
    A
    license
    A
    quality
    An MCP server that allows Claude to use OpenAI's image generation capabilities (gpt-image-1) to create image assets for users, which is particularly useful for game and web development projects.
    Last updated -
    1
    JavaScript
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/lansespirit/gpt-image-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server