Skip to main content
Glama

LangExtract MCP Server

by larsenweigle
fastmcp.md5.53 kB
# FastMCP Framework Study Notes - Deep Analysis ## Overview FastMCP is a Python framework for building Model Context Protocol (MCP) servers and clients, designed to enable sophisticated interactions between AI systems and various services. It provides a "fast, Pythonic way" to build MCP servers with comprehensive functionality and enterprise-grade features. ## Core Architecture ### 1. Servers - **Primary Function**: Expose tools as executable capabilities - **Authentication**: Support multiple authentication mechanisms - **Middleware**: Enable cross-cutting functionality for request/response processing - **Resource Management**: Allow resource and prompt management - **Monitoring**: Support progress reporting and logging ### 2. Clients - **Purpose**: Provide programmatic interaction with MCP servers - **Authentication**: Support multiple methods (Bearer Token, OAuth) - **Processing**: Handle message processing, logging, and progress monitoring ## Key Features ### Tool Operations - Define tools as executable functions - Structured user input handling - Comprehensive tool management ### Resource Management - Create and manage resources - Prompt templating capabilities - Resource organization and access ### Authentication & Security - Flexible authentication strategies - Bearer Token support - OAuth integration - Authorization provider compatibility ### Middleware System - Request/response processing - Cross-cutting concerns handling - Extensible middleware chain ### Monitoring & Logging - Progress tracking - Comprehensive logging - User interaction context ## Integration Capabilities ### Supported Platforms - OpenAI API - Anthropic - Google Gemini - FastAPI - Starlette/ASGI ### Authorization Providers - Various authorization providers supported - Flexible configuration options ## Server Development Guidelines ### 1. Tool Definition - Define tools as executable functions - Implement clear input/output schemas - Handle errors gracefully ### 2. Authentication Setup - Choose appropriate authentication strategy - Configure security mechanisms - Implement user context handling ### 3. Context Configuration - Set up logging context - Configure user interactions - Implement progress tracking ### 4. Middleware Implementation - Use middleware for common functionality - Process requests and responses - Handle cross-cutting concerns ### 5. Resource Creation - Define resources and prompt templates - Organize resource access patterns - Implement resource management ## Unique Selling Points 1. **Pythonic Interface**: Natural Python API design 2. **Flexible Composition**: Modular server composition 3. **Structured Input**: Sophisticated user input handling 4. **Comprehensive SDK**: Extensive documentation and tooling 5. **Standardized Protocol**: Uses MCP for consistent interactions ## FastMCP Implementation Patterns ### 1. Server Instantiation ```python from fastmcp import FastMCP # Basic server mcp = FastMCP("Demo 🚀") # Server with configuration mcp = FastMCP( name="LangExtractServer", instructions="Extract structured information from text using LLMs", include_tags={"public"}, exclude_tags={"internal"} ) ``` ### 2. Tool Definition Patterns ```python @mcp.tool def add(a: int, b: int) -> int: """Add two numbers""" return a + b # Complex parameters with validation @mcp.tool def process_data( query: str, max_results: int = 10, sort_by: str = "relevance", category: str | None = None ) -> dict: """Process data with parameters""" return {"results": []} ``` ### 3. Error Handling ```python from fastmcp.exceptions import ToolError @mcp.tool def divide(a: float, b: float) -> float: if b == 0: raise ToolError("Cannot divide by zero") return a / b ``` ### 4. Authentication Patterns ```python from fastmcp.server.auth.providers.jwt import JWTVerifier auth = JWTVerifier( jwks_uri="https://your-auth-system.com/.well-known/jwks.json", issuer="https://your-auth-system.com", audience="your-mcp-server" ) mcp = FastMCP(name="Protected Server", auth=auth) ``` ### 5. Server Execution ```python # STDIO transport (default for MCP clients) mcp.run() # HTTP transport mcp.run(transport="http", host="0.0.0.0", port=9000) ``` ### 6. Server Composition ```python main = FastMCP(name="MainServer") sub = FastMCP(name="SubServer") main.mount(sub, prefix="sub") ``` ## Key Insights for LangExtract MCP Server 1. **Simple Decorator Pattern**: Use `@mcp.tool` for all langextract functions 2. **Type Safety**: Leverage Python type hints for automatic validation 3. **Proper Error Handling**: Use `ToolError` for controlled error messaging 4. **Clean Architecture**: Keep tools simple and focused 5. **Context Management**: Use FastMCP's built-in context for logging/progress 6. **Transport Flexibility**: Support both STDIO and HTTP transports 7. **Authentication Ready**: Design with auth in mind for production use ## Implementation Strategy for langextract Based on deeper FastMCP understanding: 1. **Clean Tool Interface**: Each langextract function as a simple `@mcp.tool` 2. **Type-Safe Parameters**: Use Pydantic models for complex inputs 3. **Structured Outputs**: Return proper dictionaries/models 4. **Error Management**: Comprehensive error handling with `ToolError` 5. **Context Integration**: Use FastMCP context for progress/logging 6. **Resource Management**: Expose example templates as MCP resources 7. **Production Ready**: Authentication and deployment configuration

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/larsenweigle/langextract-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server