Skip to main content
Glama

LangExtract MCP Server

by larsenweigle

extract_from_url

Extract structured data from web content using a URL. Downloads text and applies Large Language Models to retrieve specific entities based on provided instructions and examples.

Instructions

Extract structured information from text content at a URL.

Downloads text from the specified URL and extracts structured information using Large Language Models. Ideal for processing web articles, documents, or any text content accessible via HTTP/HTTPS.

Args: url: URL to download text from (must start with http:// or https://) prompt_description: Clear instructions for what to extract examples: List of example extractions to guide the model config: Configuration parameters for the extraction

Returns: Dictionary containing extracted entities with source locations and metadata

Raises: ToolError: If URL is invalid, download fails, or extraction fails

Input Schema

NameRequiredDescriptionDefault
configNo
examplesYes
prompt_descriptionYes
urlYes

Input Schema (JSON Schema)

{ "$defs": { "ExtractionConfig": { "description": "Configuration for extraction parameters.", "properties": { "extraction_passes": { "default": 1, "description": "Number of extraction passes for better recall", "title": "Extraction Passes", "type": "integer" }, "max_char_buffer": { "default": 1000, "description": "Max characters per chunk", "title": "Max Char Buffer", "type": "integer" }, "max_workers": { "default": 10, "description": "Max parallel workers", "title": "Max Workers", "type": "integer" }, "model_id": { "default": "gemini-2.5-flash", "description": "LLM model to use", "title": "Model Id", "type": "string" }, "temperature": { "default": 0.5, "description": "Sampling temperature (0.0-1.0)", "title": "Temperature", "type": "number" } }, "title": "ExtractionConfig", "type": "object" }, "ExtractionExample": { "description": "Model for extraction examples.", "properties": { "extractions": { "description": "Expected extractions", "items": { "additionalProperties": true, "type": "object" }, "title": "Extractions", "type": "array" }, "text": { "description": "Example text", "title": "Text", "type": "string" } }, "required": [ "text", "extractions" ], "title": "ExtractionExample", "type": "object" } }, "properties": { "config": { "$ref": "#/$defs/ExtractionConfig", "default": { "extraction_passes": 1, "max_char_buffer": 1000, "max_workers": 10, "model_id": "gemini-2.5-flash", "temperature": 0.5 }, "title": "Config" }, "examples": { "items": { "$ref": "#/$defs/ExtractionExample" }, "title": "Examples", "type": "array" }, "prompt_description": { "title": "Prompt Description", "type": "string" }, "url": { "title": "Url", "type": "string" } }, "required": [ "url", "prompt_description", "examples" ], "type": "object" }
Install Server

Other Tools from LangExtract MCP Server

Related Tools

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/larsenweigle/langextract-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server