Skip to main content
Glama

Context Optimizer MCP Server

deepResearch.ts4 kB
/** * Deep Research Tool - Conducts comprehensive, in-depth research using Exa.ai's API * Ported from VS Code extension to MCP server */ import { MCPToolResponse } from './base'; import { BaseResearchTool } from './baseResearch'; import { ConfigurationManager } from '../config/manager'; import { ExaTask, ExaResponse } from '../types/exa'; import { RESEARCH_CONFIG } from '../config/constants'; import Exa from 'exa-js'; interface DeepResearchInput { topic: string; } export class DeepResearchTool extends BaseResearchTool { readonly name = 'deepResearch'; readonly description = 'Conduct comprehensive, in-depth research using Exa.ai\'s exhaustive analysis capabilities for critical decision-making and complex architectural planning.'; readonly inputSchema = { type: 'object' as const, properties: { topic: { type: 'string' as const, description: 'The research topic or problem you want to investigate comprehensively. Be as detailed as possible about what you want to learn, including technical requirements, architectural considerations, performance needs, security concerns, or strategic implications you want analyzed in depth.' } }, required: ['topic'] }; async execute(args: any): Promise<MCPToolResponse> { try { // Validate input const validationError = this.validateRequiredFields(args, ['topic']); if (validationError) { return this.createErrorResponse(validationError); } const input = args as DeepResearchInput; // Validate topic is not empty if (!input.topic.trim()) { return this.createErrorResponse('Topic cannot be empty'); } // Get configuration const config = ConfigurationManager.getConfig(); if (!config.research.exaKey) { return this.createErrorResponse( 'Exa.ai API key is not configured. Please set the exaKey in your configuration or EXA_KEY environment variable.' ); } this.logOperation(`Starting deep research for topic: ${input.topic}`); // Conduct research const result = await this.conductDeepResearch(input.topic, config.research.exaKey); this.logOperation('Deep research completed successfully'); return this.createSuccessResponse(result.result); } catch (error) { const errorMessage = error instanceof Error ? error.message : String(error); this.logOperation(`Deep research failed: ${errorMessage}`); return this.createErrorResponse(`Research failed: ${errorMessage}`); } } private async conductDeepResearch(topic: string, exaKey: string): Promise<ExaResponse> { const client = new Exa(exaKey); try { const schema = { type: 'object' as const, properties: { result: { type: 'string' as const } }, required: ['result'], description: 'Schema with just the result in markdown.' }; if (!client?.research || typeof (client as any).research.create !== 'function') { throw new Error('Exa.js research client missing create() method'); } const research: any = (client as any).research; this.logOperation('Creating Exa deep research task'); const task = await research.create({ instructions: topic, model: RESEARCH_CONFIG.DEEP_RESEARCH.MODEL, output: { schema }, }); this.logOperation(`Task created with ID: ${task.id}. Polling for results...`); const result = await this.pollTaskWithFallback( client, task.id, RESEARCH_CONFIG.DEEP_RESEARCH.MAX_ATTEMPTS, RESEARCH_CONFIG.DEEP_RESEARCH.POLL_INTERVAL_MS, RESEARCH_CONFIG.DEEP_RESEARCH.TIMEOUT_MS ); return this.formatResponse(result); } catch (error) { const errorMessage = error instanceof Error ? error.message : 'Failed to conduct deep research with Exa.ai.'; throw new Error(`Exa.ai deep research failed: ${errorMessage}`); } } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/malaksedarous/context-optimizer-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server