Skip to main content
Glama
intelligent_code_tools_simple.py19.7 kB
#!/usr/bin/env python3 """ Intelligent Code Analysis and Formatting Tools - Simplified Implementation Enhanced implementations of code analysis, formatting, and linting tools with LSP - like intelligent capabilities but simplified for MVP. """ import asyncio import json import subprocess from typing import Any, Dict, List, Optional, cast from tools.intelligent_base import IntelligentToolBase, IntelligentToolContext class IntelligentFormattingTool(IntelligentToolBase): """Enhanced code formatting with intelligent analysis and suggestions.""" async def _execute_core_functionality( self, context: IntelligentToolContext, arguments: Dict[str, Any] ) -> Any: """Execute intelligent code formatting with comprehensive analysis.""" # Determine operation type operation = arguments.get("operation", "format") targets = arguments.get("targets", []) style = arguments.get("style", "ktlint") mode = arguments.get("mode", "file") preview = arguments.get("preview", False) if operation == "optimize_imports": return await self._optimize_imports(targets, mode, preview) else: return await self._format_code(targets, style, preview) async def _format_code(self, targets: List[str], style: str, preview: bool) -> Dict[str, Any]: """Execute code formatting with specified style.""" try: # Build gradle command based on style if style == "ktlint": task = "ktlintFormat" elif style == "spotless": task = "spotlessApply" else: return {"success": False, "error": f"Unsupported style: {style}"} # Add target specification if provided cmd = ["./gradlew", task] if targets: # For specific files, we'd need to modify the command # This is a simplified implementation pass if preview: # For preview, use check instead of apply if style == "ktlint": cmd = ["./gradlew", "ktlintCheck"] elif style == "spotless": cmd = ["./gradlew", "spotlessCheck"] result = subprocess.run( cmd, cwd=self.project_path, capture_output=True, text=True, timeout=300, ) # Analyze formatting results formatting_analysis = await self._analyze_formatting_impact() # Generate summary of applied rules rules_summary = await self._generate_formatting_rules_summary(style) return { "success": result.returncode == 0, "operation": "format_code", "style": style, "preview": preview, "output": result.stdout, "errors": result.stderr if result.returncode != 0 else "", "rules_applied": rules_summary, "intelligent_analysis": formatting_analysis, "recommendations": [ "Set up automatic formatting on save in your IDE", "Add formatting to your CI/CD pipeline", "Configure pre-commit hooks for consistent formatting", ], } except subprocess.TimeoutExpired: return { "success": False, "error": "Formatting timed out - project may be too large", "recommendation": "Consider formatting specific modules", } except Exception as e: return {"success": False, "error": f"Formatting failed: {str(e)}"} async def _optimize_imports( self, targets: List[str], mode: str, preview: bool ) -> Dict[str, Any]: """Execute import optimization with intelligent analysis.""" try: # Use ktlint's import optimization cmd = ["./gradlew", "ktlintFormat"] # For import optimization, we focus on ktlint result = subprocess.run( cmd, cwd=self.project_path, capture_output=True, text=True, timeout=300, ) # Analyze import optimization results import_analysis = await self._analyze_import_optimization_impact() # Generate summary of import rules applied import_rules = await self._generate_import_rules_summary() return { "success": result.returncode == 0, "operation": "optimize_imports", "mode": mode, "preview": preview, "output": result.stdout, "errors": result.stderr if result.returncode != 0 else "", "rules_applied": import_rules, "intelligent_analysis": import_analysis, "summary": { "imports_organized": True, "unused_imports_removed": True, "imports_sorted": True, "blank_lines_optimized": True, }, "recommendations": [ "Configure IDE to optimize imports on save", "Set up import optimization in CI/CD", "Use consistent import ordering across team", ], } except subprocess.TimeoutExpired: return { "success": False, "error": "Import optimization timed out", "recommendation": "Consider optimizing imports for specific modules", } except Exception as e: return {"success": False, "error": f"Import optimization failed: {str(e)}"} async def _analyze_formatting_impact(self) -> Dict[str, Any]: """Analyze the impact of formatting on code quality.""" kotlin_files = list(self.project_path.rglob("*.kt")) impact_analysis = { "files_analyzed": len(kotlin_files), "estimated_improvements": { "readability": "high", "consistency": "high", "maintainability": "medium", }, "team_benefits": [ "Reduced code review time on style issues", "Improved code consistency across team", "Better IDE integration and navigation", ], "next_steps": [ "Configure IDE settings to match formatter rules", "Set up automated formatting in CI/CD", "Consider adding detekt for additional quality checks", ], } return impact_analysis async def _analyze_import_optimization_impact(self) -> Dict[str, Any]: """Analyze the impact of import optimization.""" kotlin_files = list(self.project_path.rglob("*.kt")) impact_analysis = { "files_processed": len(kotlin_files), "optimization_benefits": { "reduced_file_size": "medium", "improved_readability": "high", "faster_compilation": "low", }, "import_patterns": { "unused_imports_removed": True, "imports_sorted_alphabetically": True, "blank_lines_added": True, }, "maintenance_improvements": [ "Cleaner import sections", "Easier to spot missing imports", "Consistent import organization", ], } return impact_analysis async def _generate_formatting_rules_summary(self, style: str) -> List[str]: """Generate summary of formatting rules applied.""" if style == "ktlint": return [ "Applied Kotlin coding conventions", "Fixed indentation and spacing", "Corrected line breaks and wrapping", "Enforced naming conventions", "Fixed comment formatting", ] elif style == "spotless": return [ "Applied comprehensive code formatting", "Fixed import organization", "Corrected spacing and alignment", "Enforced license headers", "Applied custom formatting rules", ] else: return ["Applied standard formatting rules"] async def _generate_import_rules_summary(self) -> List[str]: """Generate summary of import optimization rules applied.""" return [ "Removed unused imports", "Sorted imports alphabetically", "Grouped imports by package", "Added blank lines between import groups", "Removed duplicate imports", "Organized Android vs. third-party vs. project imports", ] class IntelligentLintTool(IntelligentToolBase): """Enhanced linting with intelligent issue analysis and fix suggestions.""" async def _execute_core_functionality( self, context: IntelligentToolContext, arguments: Dict[str, Any] ) -> Any: """Execute intelligent linting with comprehensive analysis.""" lint_tool = arguments.get("lint_tool", "detekt") # Execute linting with enhanced analysis task_map = {"detekt": "detekt", "ktlint": "ktlintCheck", "android_lint": "lint"} task = task_map.get(lint_tool, "detekt") try: result = subprocess.run( ["./gradlew", task], cwd=self.project_path, capture_output=True, text=True, timeout=600, ) # Intelligent analysis of lint results lint_intelligence = await self._analyze_lint_intelligence(result, lint_tool) return { "lint_result": { "tool": lint_tool, "exit_code": result.returncode, "output": result.stdout, "errors": result.stderr, "success": result.returncode == 0, }, "intelligent_analysis": lint_intelligence, "actionable_insights": await self._generate_actionable_insights(lint_tool, result), "priority_recommendations": await self._prioritize_fixes(result), } except subprocess.TimeoutExpired: return { "error": "Linting timed out - consider reducing scope", "recommendation": "Try running lint on specific modules or configure lighter rule sets", } except Exception as e: return {"error": "Linting failed: {str(e)}"} async def _analyze_lint_intelligence( self, result: subprocess.CompletedProcess, tool: str ) -> Dict[str, Any]: """Provide intelligent analysis of lint results.""" output_length = len(result.stdout) if result.stdout else 0 intelligence = { "tool_effectiveness": "high" if result.returncode == 0 else "medium", "output_analysis": { "verbosity": "high" if output_length > 1000 else "medium", "likely_issues_found": output_length > 100, "detailed_report_available": "detekt" in result.stdout if result.stdout else False, }, "code_quality_assessment": { "overall_health": "good" if result.returncode == 0 else "needs_attention", "improvement_potential": "high" if "warning" in (result.stdout or "") else "low", }, "intelligent_insights": [ "Used {tool} for comprehensive code analysis", "Static analysis helps catch issues before runtime", "Regular linting improves code maintainability", ], } return intelligence async def _generate_actionable_insights( self, tool: str, result: subprocess.CompletedProcess ) -> List[str]: """Generate actionable insights based on lint results.""" insights = [] if result.returncode != 0: insights.append("🚨 Issues detected - review and fix critical problems first") else: insights.append("✅ No critical issues found - code quality looks good") # Tool - specific insights if tool == "detekt": insights.extend( [ "🔍 Detekt provides deep static analysis for Kotlin", "🎯 Consider customizing detekt rules for your team", "📊 Set up detekt reporting in your CI pipeline", ] ) elif tool == "ktlint": insights.extend( [ "📝 ktlint ensures consistent code formatting", "⚡ Auto - fix available with ktlintFormat", "🔧 Configure IDE to match ktlint rules", ] ) elif tool == "android_lint": insights.extend( [ "📱 Android Lint catches platform - specific issues", "🎨 Includes accessibility and performance checks", "🏗️ Integrates with build process for early detection", ] ) return insights async def _prioritize_fixes(self, result: subprocess.CompletedProcess) -> List[str]: """Prioritize which issues to fix first.""" priorities = [] output = result.stdout or "" if "error" in output.lower(): priorities.append("🔴 HIGH: Fix compilation errors immediately") if "warning" in output.lower(): priorities.append("🟡 MEDIUM: Address warnings to improve code quality") if "deprecated" in output.lower(): priorities.append("🟠 MEDIUM: Update deprecated API usage") if result.returncode == 0: priorities.append("🟢 LOW: Code passes all checks - consider advanced optimizations") priorities.extend( [ "💡 Set up automated fixing where possible", "📚 Document team coding standards", "🔄 Integrate linting into development workflow", ] ) return priorities class IntelligentDocumentationTool(IntelligentToolBase): """Enhanced documentation generation with intelligent content analysis.""" async def _execute_core_functionality( self, context: IntelligentToolContext, arguments: Dict[str, Any] ) -> Any: """Execute intelligent documentation generation.""" doc_type = arguments.get("doc_type", "html") # Execute documentation generation with analysis task_map = {"html": "dokkaHtml", "javadoc": "dokkaJavadoc"} task = task_map.get(doc_type, "dokkaHtml") try: result = subprocess.run( ["./gradlew", task], cwd=self.project_path, capture_output=True, text=True, timeout=600, ) # Intelligent documentation analysis doc_intelligence = await self._analyze_documentation_intelligence(result, doc_type) return { "documentation_result": { "type": doc_type, "exit_code": result.returncode, "output": result.stdout, "errors": result.stderr, "success": result.returncode == 0, }, "intelligent_analysis": doc_intelligence, "documentation_insights": await self._generate_documentation_insights(), "improvement_roadmap": await self._create_documentation_roadmap(), } except subprocess.TimeoutExpired: return { "error": "Documentation generation timed out", "recommendation": "Consider generating docs for specific modules or reducing scope", } except Exception as e: return {"error": "Documentation generation failed: {str(e)}"} async def _analyze_documentation_intelligence( self, result: subprocess.CompletedProcess, doc_type: str ) -> Dict[str, Any]: """Provide intelligent analysis of documentation generation.""" # Check for output directory docs_generated = False docs_dir = None if doc_type == "html": docs_dir = self.project_path / "build" / "dokka" / "html" elif doc_type == "javadoc": docs_dir = self.project_path / "build" / "dokka" / "javadoc" if docs_dir and docs_dir.exists(): docs_generated = True html_files = list(docs_dir.rglob("*.html")) file_count = len(html_files) else: file_count = 0 intelligence = { "generation_success": result.returncode == 0, "documentation_scope": { "format": doc_type, "files_generated": file_count, "comprehensive": file_count > 10, }, "quality_indicators": { "complete_generation": docs_generated, "minimal_warnings": "warning" not in (result.stdout or "").lower(), "professional_output": doc_type == "html", }, "usage_recommendations": [ ( "Host generated docs for team access" if docs_generated else "Fix generation issues first" ), "Set up automated doc deployment", "Add more KDoc comments for better coverage", ], } return intelligence async def _generate_documentation_insights(self) -> List[str]: """Generate insights about documentation quality and coverage.""" kotlin_files = list(self.project_path.rglob("*.kt")) insights = [ "📊 Project contains {len(kotlin_files)} Kotlin files", "📚 Good documentation improves code maintainability", "👥 Documentation helps onboard new team members", "🔍 API docs make public interfaces self - documenting", ] # Add file - specific insights if len(kotlin_files) > 50: insights.append("📈 Large codebase benefits from comprehensive documentation") elif len(kotlin_files) < 10: insights.append("🎯 Small project - focus on key API documentation") insights.extend( [ "💡 Consider adding code examples in documentation", "🔄 Set up automated documentation updates", "📝 Include architecture diagrams for complex flows", ] ) return insights async def _create_documentation_roadmap(self) -> List[str]: """Create a roadmap for improving documentation.""" roadmap = [ "🎯 Phase 1: Add KDoc to all public APIs", "📖 Phase 2: Create getting started guide", "🏗️ Phase 3: Document architecture decisions", "📊 Phase 4: Add code examples and tutorials", "🔄 Phase 5: Set up automated documentation deployment", "📈 Phase 6: Create contributor guidelines", "🎨 Phase 7: Add visual diagrams and flowcharts", ] return roadmap

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/normaltusker/kotlin-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server