Skip to main content
Glama

Kafka MCP Server

A Message Context Protocol (MCP) server that integrates with Apache Kafka to provide publish and consume functionalities for LLM and Agentic applications.

Overview

This project implements a server that allows AI models to interact with Kafka topics through a standardized interface. It supports:

  • Publishing messages to Kafka topics

  • Consuming messages from Kafka topics

Related MCP server: Slack MCP Server

Prerequisites

  • Python 3.8+

  • Apache Kafka instance

  • Python dependencies (see Installation section)

Installation

  1. Clone the repository:

    git clone <repository-url> cd <repository-directory>
  2. Create a virtual environment and activate it:

    python -m venv venv source venv/bin/activate # On Windows, use: venv\Scripts\activate
  3. Install the required dependencies:

    pip install -r requirements.txt

    If no requirements.txt exists, install the following packages:

    pip install aiokafka python-dotenv pydantic-settings mcp-server

Configuration

Create a .env file in the project root with the following variables:

# Kafka Configuration KAFKA_BOOTSTRAP_SERVERS=localhost:9092 TOPIC_NAME=your-topic-name IS_TOPIC_READ_FROM_BEGINNING=False DEFAULT_GROUP_ID_FOR_CONSUMER=kafka-mcp-group # Optional: Custom Tool Descriptions # TOOL_PUBLISH_DESCRIPTION="Custom description for the publish tool" # TOOL_CONSUME_DESCRIPTION="Custom description for the consume tool"

Usage

Running the Server

You can run the server using the provided main.py script:

python main.py --transport stdio

Available transport options:

  • stdio: Standard input/output (default)

  • sse: Server-Sent Events

Integrating with Claude Desktop

To use this Kafka MCP server with Claude Desktop, add the following configuration to your Claude Desktop configuration file:

{ "mcpServers": { "kafka": { "command": "python", "args": [ "<PATH TO PROJECTS>/main.py" ] } } }

Replace <PATH TO PROJECTS> with the absolute path to your project directory.

Project Structure

  • main.py: Entry point for the application

  • kafka.py: Kafka connector implementation

  • server.py: MCP server implementation with tools for Kafka interaction

  • settings.py: Configuration management using Pydantic

Available Tools

kafka-publish

Publishes information to the configured Kafka topic.

kafka-consume

consume information from the configured Kafka topic.

  • Note: once a message is read from the topic it can not be read again using the same groupid

Create-Topic

Creates a new Kafka topic with specified parameters.

  • Options:

    • --topicName of the topic to create

    • --partitionsNumber of partitions to allocate

    • --replication-factorReplication factor across brokers

    • --config(optional) Topic-level configuration overrides (e.g., retention.ms=604800000)

Delete-Topic

Deletes an existing Kafka topic.

  • Options:

    • --topicName of the topic to delete

    • --timeout(optional) Time to wait for deletion to complete

List-Topics

Lists all topics in the cluster (or filtered by pattern).

  • Options:

    • --bootstrap-serverBroker address

    • --pattern(optional) Regular expression to filter topic names

    • --exclude-internal(optional) Exclude internal topics (default: true)

Topic-Configuration

Displays or alters configuration for one or more topics.

  • Options:

    • --describeShow current configs for a topic

    • --alterModify configs (e.g., --add-config retention.ms=86400000,--delete-config cleanup.policy)

    • --topicName of the topic

Topic-Metadata

Retrieves metadata about a topic or the cluster.

  • Options:

    • --topic(If provided) Fetch metadata only for this topic

    • --bootstrap-serverBroker address

    • --include-offline(optional) Include brokers or partitions that are offline

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pavanjava/kafka_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server