Skip to main content
Glama
apps.ts773 B
import { createEmbeddings, extractEntities, identifyTopApps } from "./llm" import { findRelevantApps } from "./supabase" export async function findApps(content: string): Promise<{ topApps: string[] relevantApps: { [key: string]: string }[] }> { const apps: string[] = [] if (!content) return apps const extractedEntities = await extractEntities(content) // Embed both the whole message and the extracted entities const entities = [content, ...(extractedEntities || [])] const embeddings = await createEmbeddings(entities) const vectors = embeddings?.data?.map((it) => JSON.stringify(it.embedding)) const relevantApps = await findRelevantApps(vectors) const topApps = await identifyTopApps(content, relevantApps) return { topApps, relevantApps } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rajnandan1/pd-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server