Skip to main content
Glama
monitoring_setup.md13 kB
# Monitoring and Observability Setup This template provides guidelines for implementing comprehensive monitoring and observability in the project. ## Monitoring Strategy ### Key Principles 1. **Comprehensive Coverage**: Monitor all critical system components 2. **Actionable Insights**: Focus on metrics that drive decisions 3. **Proactive Detection**: Identify issues before they impact users 4. **Contextual Alerting**: Provide sufficient context in alerts 5. **Holistic View**: Combine metrics, logs, and traces for complete visibility ### Monitoring Layers 1. **Infrastructure**: Servers, containers, cloud resources 2. **Application**: API endpoints, services, background jobs 3. **Business**: User actions, conversions, engagement 4. **Security**: Access patterns, anomalies, vulnerabilities ## Key Metrics to Track ### System Metrics - **CPU Usage**: Average and peak utilization - **Memory Usage**: Total, used, cached, buffer - **Disk Usage**: Space, I/O operations, latency - **Network**: Throughput, latency, error rates - **Container Metrics**: Restarts, resource usage ### Application Metrics - **Request Rate**: Requests per second - **Error Rate**: Percentage of failed requests - **Latency**: Response time (p50, p90, p95, p99) - **Saturation**: How overloaded the system is - **Apdex Score**: User satisfaction based on response time ### Business Metrics - **Active Users**: Daily/monthly active users - **Conversion Rate**: Percentage of users completing key actions - **Session Duration**: Time spent in the application - **Error Impact**: Number of users affected by errors - **Feature Usage**: Adoption of specific features ### Database Metrics - **Query Performance**: Execution time, slow queries - **Connection Pool**: Utilization, wait time - **Cache Hit Rate**: Effectiveness of database caching - **Index Usage**: Proper utilization of indexes - **Transaction Volume**: Number of transactions ## Logging Standards ### Log Levels - **ERROR**: Exception conditions requiring immediate attention - **WARN**: Unexpected situations that can be recovered from - **INFO**: Important application events and milestones - **DEBUG**: Detailed information for troubleshooting - **TRACE**: Very detailed debugging information ### Log Format Structured JSON format with the following fields: ```json { "timestamp": "2023-01-01T12:00:00.000Z", "level": "INFO", "service": "user-service", "trace_id": "4f8b3e2a1c9d8e7f", "span_id": "1a2b3c4d5e6f", "user_id": "anonymous/user-id", "message": "User logged in successfully", "context": { "request_id": "abcd1234", "ip_address": "127.0.0.1", "user_agent": "Mozilla/5.0..." }, "additional_data": { "key1": "value1", "key2": "value2" } } ``` ### Logging Best Practices 1. **Be Selective**: Log important events, not everything 2. **Include Context**: Add relevant context for troubleshooting 3. **Sensitive Data**: Never log passwords, tokens, or PII 4. **Consistency**: Use consistent formatting and levels 5. **Performance**: Consider logging impact on application performance ## Tracing Configuration ### Distributed Tracing Setup 1. **Instrumentation**: Auto-instrument frameworks and libraries 2. **Propagation**: Use standard headers (W3C Trace Context) 3. **Sampling**: Implement appropriate sampling strategy 4. **Service Map**: Visualize service dependencies ### Key Tracing Metrics - **End-to-End Latency**: Total request processing time - **Service Latency**: Time spent in each service - **Database Calls**: Time spent in database operations - **External Service Calls**: Time spent calling external APIs - **Error Paths**: Trace paths that result in errors ## Alert Configuration ### Alert Severity Levels 1. **Critical**: Immediate action required (24/7) 2. **High**: Action required during business hours 3. **Medium**: Should be investigated within 1-2 days 4. **Low**: Informational, no immediate action required ### Alert Types 1. **Threshold-based**: Trigger when metric exceeds threshold 2. **Anomaly-based**: Trigger on unusual patterns 3. **Absence-based**: Trigger when expected data is missing 4. **Composite**: Trigger based on multiple conditions ### Effective Alert Design 1. **Actionable**: Clear what action is needed 2. **Relevant**: Alert the right team or person 3. **Contextual**: Include sufficient diagnostic information 4. **Prioritized**: Indicate urgency and importance 5. **Documented**: Link to runbook or documentation ## Dashboard Setup ### Dashboard Types 1. **Overview**: High-level system health 2. **Service-Specific**: Detailed metrics for each service 3. **Business**: Key business metrics and KPIs 4. **On-Call**: Critical metrics for incident response 5. **SLO/SLA**: Service level objectives and compliance ### Dashboard Best Practices 1. **Simplicity**: Focus on key metrics, avoid clutter 2. **Consistency**: Use consistent layout and visualization 3. **Context**: Include sufficient context for interpretation 4. **Interactivity**: Allow drill-down into detailed metrics 5. **Time Range**: Support different time ranges for analysis ## Monitoring Tools Integration ### Infrastructure Setup ```yaml # Prometheus configuration example global: scrape_interval: 15s scrape_configs: - job_name: 'application' metrics_path: '/metrics' static_configs: - targets: ['application:8080'] - job_name: 'database' static_configs: - targets: ['database-exporter:9187'] - job_name: 'node-exporter' static_configs: - targets: ['node-exporter:9100'] ``` ### Application Instrumentation #### Python Example (with Prometheus Client) ```python from prometheus_client import Counter, Histogram, start_http_server import time # Create metrics REQUEST_COUNT = Counter('app_requests_total', 'Total app requests', ['method', 'endpoint', 'status']) REQUEST_LATENCY = Histogram('app_request_latency_seconds', 'Request latency', ['method', 'endpoint']) # Start metrics server start_http_server(8000) # Example instrumentation def process_request(request): start_time = time.time() # Process request here status = 200 # Record metrics REQUEST_COUNT.labels(request.method, request.path, status).inc() REQUEST_LATENCY.labels(request.method, request.path).observe(time.time() - start_time) ``` #### JavaScript Example (with Prometheus Client) ```javascript const promClient = require('prom-client'); // Create a Registry to register metrics const register = new promClient.Registry(); // Enable default metrics promClient.collectDefaultMetrics({ register }); // Create custom metrics const httpRequestCounter = new promClient.Counter({ name: 'http_requests_total', help: 'Total number of HTTP requests', labelNames: ['method', 'endpoint', 'status'], registers: [register] }); const httpRequestDuration = new promClient.Histogram({ name: 'http_request_duration_seconds', help: 'HTTP request duration in seconds', labelNames: ['method', 'endpoint'], buckets: [0.01, 0.05, 0.1, 0.5, 1, 5], registers: [register] }); // Example middleware for Express function metricsMiddleware(req, res, next) { const start = Date.now(); res.on('finish', () => { const duration = (Date.now() - start) / 1000; httpRequestCounter.inc({ method: req.method, endpoint: req.path, status: res.statusCode }); httpRequestDuration.observe({ method: req.method, endpoint: req.path }, duration); }); next(); } // Metrics endpoint app.get('/metrics', async (req, res) => { res.set('Content-Type', register.contentType); res.end(await register.metrics()); }); ``` ### Log Aggregation Setup #### Fluentd Configuration Example ``` <source> @type forward port 24224 bind 0.0.0.0 </source> <filter **> @type parser key_name log reserve_data true <parse> @type json </parse> </filter> <match **> @type elasticsearch host elasticsearch port 9200 logstash_format true logstash_prefix fluentd <buffer> @type file path /var/log/fluentd-buffers/ flush_mode interval flush_interval 5s </buffer> </match> ``` ## Incident Response ### Incident Severity Levels 1. **SEV1**: Critical service outage affecting all users 2. **SEV2**: Partial service outage affecting many users 3. **SEV3**: Degraded service affecting some users 4. **SEV4**: Minor issue affecting few users ### Incident Response Workflow 1. **Detection**: Automated alert or manual report 2. **Triage**: Assess severity and impact 3. **Response**: Investigate and mitigate 4. **Resolution**: Implement fix and verify 5. **Postmortem**: Document and learn ### Runbook Template ```markdown # [Incident Type] Runbook ## Overview [Brief description of the incident type] ## Detection - **Alert Conditions**: [What triggers the alert] - **Dashboard**: [Link to relevant dashboard] - **Symptoms**: [Observable symptoms] ## Triage 1. [Initial investigation step] 2. [Impact assessment] 3. [Severity determination] ## Response ### 1. [Initial Response] - [Step 1] - [Step 2] - [Step 3] ### 2. [Secondary Response] - [Step 1] - [Step 2] - [Step 3] ### 3. [Escalation Process] - **Tier 1**: [Who to contact and when] - **Tier 2**: [Who to contact and when] - **Tier 3**: [Who to contact and when] ## Verification - [How to verify the issue is resolved] - [What metrics to check] ## Communication - **Internal**: [Who to inform and how] - **External**: [Customer communication if needed] ## Follow-up - [Postmortem process] - [Preventive measures] ``` ## SLO and SLA Monitoring ### Service Level Indicators (SLIs) 1. **Availability**: Percentage of successful requests 2. **Latency**: Response time percentiles 3. **Throughput**: Requests per second 4. **Error Rate**: Percentage of failed requests 5. **Saturation**: Resource utilization ### Service Level Objectives (SLOs) 1. **Availability SLO**: 99.9% successful requests 2. **Latency SLO**: 95% of requests under 200ms 3. **Error Rate SLO**: Less than 0.1% error rate ### Error Budget Monitoring 1. **Budget Calculation**: 100% - SLO = Error Budget 2. **Consumption Rate**: How quickly budget is being used 3. **Alerting**: Notify when budget is being consumed too quickly ## Implementation Plan ### Phase 1: Basic Monitoring 1. Set up infrastructure monitoring 2. Implement basic application metrics 3. Configure centralized logging 4. Create essential dashboards 5. Set up critical alerts ### Phase 2: Enhanced Observability 1. Implement distributed tracing 2. Add business metrics 3. Develop comprehensive dashboards 4. Set up detailed alerting 5. Create initial runbooks ### Phase 3: Advanced Monitoring 1. Define and implement SLOs 2. Set up error budget monitoring 3. Implement anomaly detection 4. Create comprehensive runbooks 5. Establish regular monitoring review process ## Tool-Specific Configurations ### Prometheus/Grafana Setup ```yaml # docker-compose.yml example version: '3' services: prometheus: image: prom/prometheus volumes: - ./prometheus.yml:/etc/prometheus/prometheus.yml ports: - "9090:9090" grafana: image: grafana/grafana depends_on: - prometheus ports: - "3000:3000" volumes: - grafana-data:/var/lib/grafana node-exporter: image: prom/node-exporter ports: - "9100:9100" restart: always volumes: grafana-data: ``` ### ELK Stack Setup ```yaml # docker-compose.yml example version: '3' services: elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.10.0 environment: - discovery.type=single-node ports: - "9200:9200" volumes: - es-data:/usr/share/elasticsearch/data logstash: image: docker.elastic.co/logstash/logstash:7.10.0 depends_on: - elasticsearch volumes: - ./logstash.conf:/usr/share/logstash/pipeline/logstash.conf kibana: image: docker.elastic.co/kibana/kibana:7.10.0 depends_on: - elasticsearch ports: - "5601:5601" volumes: es-data: ``` ### Jaeger Tracing Setup ```yaml # docker-compose.yml example version: '3' services: jaeger: image: jaegertracing/all-in-one:latest ports: - "6831:6831/udp" - "16686:16686" environment: - COLLECTOR_ZIPKIN_HTTP_PORT=9411 ``` ## Maintenance and Optimization ### Regular Maintenance Tasks 1. **Alert Review**: Review and tune alert thresholds 2. **Dashboard Update**: Keep dashboards relevant and current 3. **Log Rotation**: Ensure proper log retention and rotation 4. **Storage Optimization**: Monitor and optimize storage usage 5. **Performance Tuning**: Reduce monitoring overhead ### Monitoring for the Monitoring System 1. **Self-monitoring**: Monitor the monitoring infrastructure 2. **Health Checks**: Regular health checks on monitoring components 3. **Failover Testing**: Test monitoring system resilience 4. **Capacity Planning**: Ensure monitoring system scalability

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/randomm/files-db-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server