Skip to main content
Glama
tools.md9.4 kB
# Tool Operations > Discover and execute server-side tools with the FastMCP client. export const VersionBadge = ({version}) => { return `<code className="version-badge-container">` `<p className="version-badge">` `<span className="version-badge-label">`New in version:  `<code className="version-badge-version">`{version}`</code>` `</p>` `</code>`; }; <VersionBadge version="2.0.0" /> Tools are executable functions exposed by MCP servers. The FastMCP client provides methods to discover available tools and execute them with arguments. ## Discovering Tools Use `list_tools()` to retrieve all tools available on the server: ```python async with client: tools = await client.list_tools() # tools -> list[mcp.types.Tool] for tool in tools: print(f"Tool: {tool.name}") print(f"Description: {tool.description}") if tool.inputSchema: print(f"Parameters: {tool.inputSchema}") # Access tags and other metadata if hasattr(tool, 'meta') and tool.meta: fastmcp_meta = tool.meta.get('_fastmcp', {}) print(f"Tags: {fastmcp_meta.get('tags', [])}") ``` ### Filtering by Tags <VersionBadge version="2.11.0" /> You can use the `meta` field to filter tools based on their tags: ```python async with client: tools = await client.list_tools() # Filter tools by tag analysis_tools = [ tool for tool in tools if hasattr(tool, 'meta') and tool.meta and tool.meta.get('_fastmcp', {}) and 'analysis' in tool.meta.get('_fastmcp', {}).get('tags', []) ] print(f"Found {len(analysis_tools)} analysis tools") ``` <Note> The `meta` field is part of the standard MCP specification. FastMCP servers include tags and other metadata within a `_fastmcp` namespace (e.g., `meta._fastmcp.tags`) to avoid conflicts with user-defined metadata. This behavior can be controlled with the server's `include_fastmcp_meta` setting - when disabled, the `_fastmcp` namespace won't be included. Other MCP server implementations may not provide this metadata structure. </Note> ## Executing Tools ### Basic Execution Execute a tool using `call_tool()` with the tool name and arguments: ```python async with client: # Simple tool call result = await client.call_tool("add", {"a": 5, "b": 3}) # result -> CallToolResult with structured and unstructured data # Access structured data (automatically deserialized) print(result.data) # 8 (int) or {"result": 8} for primitive types # Access traditional content blocks print(result.content[0].text) # "8" (TextContent) ``` ### Advanced Execution Options The `call_tool()` method supports additional parameters for timeout control and progress monitoring: ```python async with client: # With timeout (aborts if execution takes longer than 2 seconds) result = await client.call_tool( "long_running_task", {"param": "value"}, timeout=2.0 ) # With progress handler (to track execution progress) result = await client.call_tool( "long_running_task", {"param": "value"}, progress_handler=my_progress_handler ) ``` **Parameters:** * `name`: The tool name (string) * `arguments`: Dictionary of arguments to pass to the tool (optional) * `timeout`: Maximum execution time in seconds (optional, overrides client-level timeout) * `progress_handler`: Progress callback function (optional, overrides client-level handler) ## Handling Results <VersionBadge version="2.10.0" /> Tool execution returns a `CallToolResult` object with both structured and traditional content. FastMCP's standout feature is the `.data` property, which doesn't just provide raw JSON but actually hydrates complete Python objects including complex types like datetimes, UUIDs, and custom classes. ### CallToolResult Properties <Card icon="code" title="CallToolResult Properties"> <ResponseField name=".data" type="Any"> **FastMCP exclusive**: Fully hydrated Python objects with complex type support (datetimes, UUIDs, custom classes). Goes beyond JSON to provide complete object reconstruction from output schemas. </ResponseField> <ResponseField name=".content" type="list[mcp.types.ContentBlock]"> Standard MCP content blocks (`TextContent`, `ImageContent`, `AudioContent`, etc.) available from all MCP servers. </ResponseField> <ResponseField name=".structured_content" type="dict[str, Any] | None"> Standard MCP structured JSON data as sent by the server, available from all MCP servers that support structured outputs. </ResponseField> <ResponseField name=".is_error" type="bool"> Boolean indicating if the tool execution failed. </ResponseField> </Card> ### Structured Data Access FastMCP's `.data` property provides fully hydrated Python objects, not just JSON dictionaries. This includes complex type reconstruction: ```python from datetime import datetime from uuid import UUID async with client: result = await client.call_tool("get_weather", {"city": "London"}) # FastMCP reconstructs complete Python objects from the server's output schema weather = result.data # Server-defined WeatherReport object print(f"Temperature: {weather.temperature}°C at {weather.timestamp}") print(f"Station: {weather.station_id}") print(f"Humidity: {weather.humidity}%") # The timestamp is a real datetime object, not a string! assert isinstance(weather.timestamp, datetime) assert isinstance(weather.station_id, UUID) # Compare with raw structured JSON (standard MCP) print(f"Raw JSON: {result.structured_content}") # {"temperature": 20, "timestamp": "2024-01-15T14:30:00Z", "station_id": "123e4567-..."} # Traditional content blocks (standard MCP) print(f"Text content: {result.content[0].text}") ``` ### Fallback Behavior For tools without output schemas or when deserialization fails, `.data` will be `None`: ```python async with client: result = await client.call_tool("legacy_tool", {"param": "value"}) if result.data is not None: # Structured output available and successfully deserialized print(f"Structured: {result.data}") else: # No structured output or deserialization failed - use content blocks for content in result.content: if hasattr(content, 'text'): print(f"Text result: {content.text}") elif hasattr(content, 'data'): print(f"Binary data: {len(content.data)} bytes") ``` ### Primitive Type Unwrapping <Tip> FastMCP servers automatically wrap non-object results (like `int`, `str`, `bool`) in a `{"result": value}` structure to create valid structured outputs. FastMCP clients understand this convention and automatically unwrap the value in `.data` for convenience, so you get the original primitive value instead of a wrapper object. </Tip> ```python async with client: result = await client.call_tool("calculate_sum", {"a": 5, "b": 3}) # FastMCP client automatically unwraps for convenience print(result.data) # 8 (int) - the original value # Raw structured content shows the server-side wrapping print(result.structured_content) # {"result": 8} # Other MCP clients would need to manually access ["result"] # value = result.structured_content["result"] # Not needed with FastMCP! ``` ## Error Handling ### Exception-Based Error Handling By default, `call_tool()` raises a `ToolError` if the tool execution fails: ```python from fastmcp.exceptions import ToolError async with client: try: result = await client.call_tool("potentially_failing_tool", {"param": "value"}) print("Tool succeeded:", result.data) except ToolError as e: print(f"Tool failed: {e}") ``` ### Manual Error Checking You can disable automatic error raising and manually check the result: ```python async with client: result = await client.call_tool( "potentially_failing_tool", {"param": "value"}, raise_on_error=False ) if result.is_error: print(f"Tool failed: {result.content[0].text}") else: print(f"Tool succeeded: {result.data}") ``` ### Raw MCP Protocol Access For complete control, use `call_tool_mcp()` which returns the raw MCP protocol object: ```python async with client: result = await client.call_tool_mcp("potentially_failing_tool", {"param": "value"}) # result -> mcp.types.CallToolResult if result.isError: print(f"Tool failed: {result.content}") else: print(f"Tool succeeded: {result.content}") # Note: No automatic deserialization with call_tool_mcp() ``` ## Argument Handling Arguments are passed as a dictionary to the tool: ```python async with client: # Simple arguments result = await client.call_tool("greet", {"name": "World"}) # Complex arguments result = await client.call_tool("process_data", { "config": {"format": "json", "validate": True}, "items": [1, 2, 3, 4, 5], "metadata": {"source": "api", "version": "1.0"} }) ``` <Tip> For multi-server clients, tool names are automatically prefixed with the server name (e.g., `weather_get_forecast` for a tool named `get_forecast` on the `weather` server). </Tip>

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rdwj/mcp-test-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server