Skip to main content
Glama
by ricleedo

search-memory

Find relevant information using semantic search by querying stored vector embeddings with natural language.

Instructions

Search for information in vector database

Input Schema

NameRequiredDescriptionDefault
maxMatchesNoMaximum number of matches to return
queryYesThe search query

Input Schema (JSON Schema)

{ "properties": { "maxMatches": { "description": "Maximum number of matches to return", "type": "number" }, "query": { "description": "The search query", "type": "string" } }, "required": [ "query" ], "type": "object" }

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ricleedo/Knowledge-EmbeddingAPI-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server