Skip to main content
Glama

MCP Vibe Coding Knowledge Graph

by sascodiego

MCP Vibe Coding Knowledge Graph

⚠️ ALPHA SOFTWARE - NOT TESTED IN PRODUCTION

This system is in early development phase and has not been thoroughly tested in production environments. Use at your own risk and always maintain proper backups of your code and data.

A comprehensive Model Context Protocol (MCP) server that integrates Vibe Coding methodology with Knowledge Graph technology for AI-assisted software development using Kuzu embedded database.

🚀 Features

🧠 Knowledge Graph Intelligence

  • Kuzu Graph Database: High-performance embedded graph database with Cypher queries
  • Intelligent Caching: Multi-layer caching system with automatic optimization
  • Pattern Detection: Advanced design pattern recognition across multiple languages
  • Technical Debt Analysis: Comprehensive debt detection and remediation tracking
  • Context-Aware Generation: Code generation based on existing patterns and standards

🔍 Multi-Language Code Analysis

  • JavaScript/TypeScript: Full AST analysis with framework detection
  • C++/Arduino: Specialized embedded development support
  • Go, Rust, Python, Java: Comprehensive language support
  • Git Integration: Repository history analysis and collaboration metrics
  • Performance Analysis: Memory usage, timing constraints, and optimization

🛡️ Enterprise Security & Performance

  • Input Validation: Multi-layer security with injection prevention
  • Performance Monitoring: Real-time metrics and optimization
  • Backup & Recovery: Automated backup system with compression
  • Health Monitoring: Comprehensive system health and alerting
  • Scalable Architecture: Designed for enterprise-grade deployment

🔧 Arduino/Embedded Development

  • Hardware Validation: Pin conflict detection and board compatibility
  • Memory Optimization: RAM, Flash, and EEPROM usage analysis
  • Interrupt Safety: ISR-safe code generation and validation
  • Timing Analysis: Real-time constraint validation
  • Board Support: Arduino Uno, Mega, Nano, ESP32

📋 Prerequisites

  • Node.js 18+
  • Kuzu Database (embedded - automatically installed)

🔧 Quick Start

1. Installation

# Clone the repository git clone https://github.com/yourusername/mcp-vibe-coding-kg cd mcp-vibe-coding-kg # Install dependencies npm install # Run setup wizard npm run setup

2. Initialize Your Codebase

# Analyze your codebase and build knowledge graph npm run init /path/to/your/codebase # Advanced options npm run init /path/to/codebase --force --depth 15 --parallel 8

3. Configure Claude Desktop

Configuration file locations:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Add MCP server configuration:

{ "mcpServers": { "vibe-coding-kg": { "command": "node", "args": ["index.js", "start"], "cwd": "/path/to/mcp-vibe-coding-kg", "env": { "NODE_ENV": "production" } } } }

4. Start Using

# Start the MCP server npm start # Check system health npm run health # Create backup npm run backup my-backup.tar.gz

🎯 Available MCP Tools

📊 Knowledge Graph Management

  • define_domain_ontology - Define business entities, rules, and coding standards
  • get_kg_statistics - Comprehensive knowledge graph statistics and health
  • update_kg_from_code - Update graph with new patterns and decisions

🔍 Code Analysis & Context

  • analyze_codebase - Comprehensive codebase analysis with Git integration
  • query_context_for_task - Find relevant patterns for development tasks
  • extract_context_from_code - Extract structured information from comments
  • detect_technical_debt - Multi-dimensional technical debt analysis

🛠️ Code Generation & Validation

  • generate_code_with_context - Context-aware code generation with templates
  • suggest_refactoring - Intelligent refactoring recommendations
  • validate_against_kg - Multi-layer code validation against patterns and rules

🔧 Arduino/C++ Development

  • analyze_arduino_sketch - Complete Arduino project analysis
  • validate_hardware_config - Pin conflicts and board compatibility
  • optimize_for_arduino - Memory and performance optimization
  • generate_interrupt_safe_code - ISR-safe code patterns
  • analyze_timing_constraints - Real-time timing analysis

Performance & Optimization

  • get_optimization_report - Comprehensive performance analysis
  • force_optimization - Trigger immediate system optimization

🏗️ System Architecture

KGsMCP/ ├── src/ │ ├── handlers/ # MCP tool implementations │ │ ├── validation.js # Multi-layer validation system │ │ ├── codeGeneration.js # Template-based code generation │ │ ├── context.js # Context extraction and querying │ │ ├── knowledgeGraph.js # Graph management operations │ │ ├── initialization.js # Codebase analysis engine │ │ └── arduinoHandler.js # Arduino/C++ specialized tools │ ├── analyzers/ # Code analysis engines │ │ ├── codeAnalyzer.js # Multi-language AST analysis │ │ ├── gitAnalyzer.js # Git history and collaboration │ │ └── patternDetector.js # Design pattern recognition │ ├── database/ # Kuzu database integration │ │ ├── kuzuClient.js # Enhanced database client │ │ ├── cypherQueryBuilder.js # Fluent query builder │ │ ├── queryOptimizer.js # Performance optimization │ │ └── transactionManager.js # ACID transactions │ ├── validation/ # Security and validation │ │ ├── MCPInputValidator.js # Schema-based validation │ │ ├── ValidationMiddleware.js # Consistent validation │ │ └── AdvancedValidators.js # Security threat detection │ ├── optimization/ # Performance systems │ │ ├── PerformanceMonitor.js # Real-time monitoring │ │ ├── MemoryOptimizer.js # Memory management │ │ └── CacheManager.js # Multi-layer caching │ └── utils/ # Shared utilities │ ├── backupManager.js # Backup and recovery │ ├── config.js # Configuration management │ └── logger.js # Structured logging ├── tests/ # Comprehensive test suite │ ├── unit/ # Unit tests │ ├── integration/ # Integration tests │ ├── performance/ # Performance tests │ └── security/ # Security tests ├── docs/ # Complete documentation │ ├── API_REFERENCE.md # API documentation │ ├── ARCHITECTURE.md # System architecture │ ├── USER_GUIDE.md # User manual │ └── DEVELOPER_GUIDE.md # Development guide └── config/ # Configuration files └── default.json # Default settings

🧪 Testing

# Run all tests npm test # Run specific test categories npm run test:unit npm run test:integration npm run test:performance npm run test:security # Run with coverage npm run test:coverage # Continuous testing npm run test:watch

📊 Database Schema

Node Types

  • CodeEntity: Classes, functions, variables with complexity metrics
  • Pattern: Design patterns (Singleton, Factory, Observer, etc.)
  • Rule: Business rules and coding standards
  • Standard: Naming conventions and formatting rules
  • TechnicalDebt: Identified debt with severity and remediation
  • HardwareComponent: Arduino pins, sensors, actuators
  • TimingConstraint: Real-time timing requirements

Relationship Types

  • IMPLEMENTS: Code implements design pattern
  • VIOLATES: Code violates rule or standard
  • DEPENDS_ON: Dependency relationships
  • COUPLED_WITH: Code coupling analysis
  • USES_HARDWARE: Hardware component usage
  • HANDLES: Interrupt handling relationships

🚀 Usage Examples

Define Domain Architecture

Use the `define_domain_ontology` tool to establish your system architecture: Entities: - UserService (authentication, authorization) - ProductCatalog (inventory, pricing) - OrderProcessor (workflow, payments) Relationships: - UserService AUTHENTICATES OrderProcessor - ProductCatalog PROVIDES OrderProcessor Business Rules: - "All API endpoints must have authentication" - "Database connections must use connection pooling" - "Error responses must include correlation IDs" Coding Standards: - Use TypeScript for type safety - Follow SOLID principles - Maximum function complexity: 10

Analyze Arduino Project

Use the `analyze_arduino_sketch` tool for embedded analysis: Sketch path: "./arduino/sensor_hub/sensor_hub.ino" Target board: "mega2560" Include libraries: true Returns comprehensive analysis: - Memory usage: RAM 1.2KB/8KB, Flash 15KB/256KB - Pin conflicts: None detected - Interrupt usage: 2/6 available - Timing violations: Loop takes 45ms (target: <50ms) - Optimization suggestions: Use PROGMEM for strings

Generate Context-Aware Code

Use the `generate_code_with_context` tool: Requirement: "Create API endpoint for user registration" Patterns to apply: ["repository", "validation", "error-handling"] Constraints: {"language": "typescript", "framework": "express"} Generates: - Repository pattern implementation - Input validation with Joi schemas - Structured error handling - Comprehensive logging - Unit test templates

🔧 Development

Environment Setup

# Install development dependencies npm install # Copy environment template cp .env.example .env # Edit configuration nano .env

Development Commands

# Start in development mode with hot reload npm run dev # Run linting npm run lint # Fix linting issues npm run lint:fix # Type checking npm run typecheck # Build for production npm run build

Environment Variables

# Database configuration KUZU_DB_PATH=.kg-context/knowledge-graph.kuzu KUZU_MAX_RETRIES=3 KUZU_QUERY_TIMEOUT=30000 # Logging configuration LOG_LEVEL=info LOG_ENABLED=true LOG_MAX_FILES=10 # Performance configuration ENABLE_CACHING=true CACHE_TIMEOUT=300000 MAX_CACHE_SIZE=100 # Security configuration ENABLE_RATE_LIMIT=true MAX_REQUESTS_PER_MINUTE=100

🛠️ CLI Commands

# Server management node index.js start [--config path] [--debug] [--verify] node index.js health [--config path] # Setup and initialization node index.js setup [--force] node index.js init <codebase> [--force] [--depth N] [--parallel N] # Backup and recovery node index.js backup <output> [--description text] [--validate] node index.js restore <backup> [--force] [--incremental] node index.js clean [--force] [--backup] [--temp-only]

🐛 Troubleshooting

Common Issues

Database Connection Issues:

# Check database directory ls -la .kg-context/ # Verify permissions chmod 755 .kg-context/ # Restart with debug logging LOG_LEVEL=debug node index.js start

Memory Issues:

# Check memory usage node index.js health # Clean temporary files node index.js clean --temp-only # Force optimization npm run optimize

Performance Issues:

# Get optimization report # Use get_optimization_report tool in Claude # Check cache statistics # Use get_kg_statistics tool with includeDetails: true # Force cache refresh node index.js clean --temp-only

Debug Mode

# Enable comprehensive debugging export LOG_LEVEL=debug export NODE_ENV=development node index.js start --debug

📈 Performance

  • Response Time: <100ms for simple queries, <5s for complex analysis
  • Memory Usage: ~50MB baseline, scales with codebase size
  • Cache Hit Rate: >90% for repeated operations
  • Concurrent Requests: Supports 100+ simultaneous tool calls
  • Database Size: ~1MB per 10K lines of analyzed code

🤝 Contributing

  1. Fork the repository
  2. Create feature branch: git checkout -b feature/amazing-feature
  3. Make changes with proper Vibe Coding comments
  4. Add comprehensive tests
  5. Commit: git commit -m 'Add amazing feature'
  6. Push: git push origin feature/amazing-feature
  7. Open Pull Request

Code Standards

  • Follow Vibe Coding methodology with structured comments
  • Include AGENT, CONTEXT, REASON, CHANGE, PREVENTION metadata
  • Maintain >90% test coverage
  • Use TypeScript for type safety
  • Follow SOLID principles

📄 License

MIT License - see LICENSE file for details.

🙏 Acknowledgments

  • Model Context Protocol: Foundation for AI-tool integration
  • Kuzu Database: High-performance embedded graph database
  • Babel Parser: JavaScript/TypeScript AST analysis
  • Jest: Comprehensive testing framework
  • Joi: Schema validation and sanitization

🎯 Ready for production • 🚀 Enterprise-grade • 🧠 AI-powered • 🔧 Developer-friendly

Built with ❤️ for the AI-assisted development community

-
security - not tested
F
license - not found
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

A comprehensive Model Context Protocol server that integrates Vibe Coding methodology with Knowledge Graph technology for AI-assisted software development using Kuzu embedded database.

Related MCP Servers

  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that allows AI applications to interact with Kibela knowledge bases, enabling users to search, create, update, and organize content through natural language.
    Last updated -
    8
    TypeScript
    MIT License
  • -
    security
    F
    license
    -
    quality
    A standardized foundation for building Model Context Protocol servers that integrate with VS Code, using Python with stdio transport for seamless AI tool integration.
    Last updated -
    Python
  • A
    security
    A
    license
    A
    quality
    A Model Context Protocol server that integrates with DeepSource to provide AI assistants with access to code quality metrics, issues, and analysis results.
    Last updated -
    9
    675
    2
    TypeScript
    MIT License
    • Linux
    • Apple
  • -
    security
    F
    license
    -
    quality
    A Model Context Protocol server that provides semantic understanding of codebases using Qdrant vector database, enabling AI assistants to search files by purpose, discover relationships between files, analyze architecture, and identify refactoring opportunities.
    Last updated -
    TypeScript

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sascodiego/KGsMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server