Skip to main content
Glama

Azure AI Image Editor MCP Server

by satomic
mcp_server_http.py24.4 kB
#!/usr/bin/env python3 """ Azure Image Editor MCP Server - HTTP Version A MCP server that supports Azure AI Foundry image generation and editing capabilities. This version uses HTTP with JSON-RPC for communication. """ import asyncio import base64 import os import sys import logging import json from datetime import datetime from typing import Any from pathlib import Path try: from starlette.applications import Starlette from starlette.routing import Route from starlette.responses import JSONResponse, Response from starlette.requests import Request import uvicorn from dotenv import load_dotenv except ImportError as e: print(f"Error: Required dependency missing: {e}", file=sys.stderr) print("Please install required packages: pip install python-dotenv starlette uvicorn", file=sys.stderr) sys.exit(1) # Add src directory to Python path sys.path.insert(0, str(Path(__file__).parent)) try: from azure_image_client import AzureImageGenerator except ImportError as e: print(f"Error: Cannot import azure_image_client: {e}", file=sys.stderr) print("Please ensure azure_image_client.py is in the same directory", file=sys.stderr) sys.exit(1) # Load environment variables load_dotenv() # Set up logging def setup_logging(): """Setup logging configuration""" log_dir = Path("logs") log_dir.mkdir(exist_ok=True) log_file = log_dir / f"mcp_server_http_{datetime.now().strftime('%Y%m%d')}.log" logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler(log_file, encoding='utf-8'), logging.StreamHandler(sys.stderr) ] ) return logging.getLogger(__name__) logger = setup_logging() def get_azure_config(): """Get Azure configuration from environment variables""" try: required_vars = { "AZURE_BASE_URL": "Base URL for Azure AI service", "AZURE_API_KEY": "API key for Azure AI service", "AZURE_DEPLOYMENT_NAME": "Deployment model name" } missing_vars = [] config = {} for var_name, description in required_vars.items(): value = os.getenv(var_name) if not value or not value.strip(): missing_vars.append(f"{var_name} ({description})") else: key_map = { "AZURE_BASE_URL": "base_url", "AZURE_API_KEY": "api_key", "AZURE_DEPLOYMENT_NAME": "deployment_name" } config[key_map[var_name]] = value.strip() # Handle optional variables model_value = os.getenv("AZURE_MODEL") config["model"] = model_value.strip() if model_value and model_value.strip() else "flux.1-kontext-pro" api_version_value = os.getenv("AZURE_API_VERSION") config["api_version"] = api_version_value.strip() if api_version_value and api_version_value.strip() else "2025-04-01-preview" if missing_vars: error_msg = f"Missing required environment variables: {', '.join(missing_vars)}" logger.error(error_msg) raise ValueError(error_msg) # Basic validation if not config["base_url"].startswith(("http://", "https://")): raise ValueError("AZURE_BASE_URL must be a valid HTTP/HTTPS URL") if len(config["api_key"]) < 10: raise ValueError("AZURE_API_KEY is too short, please check if the API key is correct") if not config["deployment_name"]: raise ValueError("AZURE_DEPLOYMENT_NAME cannot be empty") logger.info("Azure configuration loaded successfully") return config except ValueError: raise except Exception as e: error_msg = f"Error loading Azure configuration: {str(e)}" logger.error(error_msg) raise Exception(error_msg) def is_english_text(text: str) -> bool: """Check if text is primarily in English""" if not text.strip(): return True # Check if it contains CJK characters for char in text: if '\u4e00' <= char <= '\u9fff' or \ '\u3040' <= char <= '\u309f' or \ '\u30a0' <= char <= '\u30ff' or \ '\uac00' <= char <= '\ud7af': return False return True def validate_image_size(size: str) -> bool: """Validate image size format""" supported_sizes = ["1024x1024", "1792x1024", "1024x1792"] return size in supported_sizes async def get_tools_list(): """Get list of available tools""" default_size = os.getenv("DEFAULT_IMAGE_SIZE", "1024x1024") return { "tools": [ { "name": "generate_image", "description": "Generate images from text prompts using Azure AI Foundry (English prompts only)", "inputSchema": { "type": "object", "properties": { "prompt": { "type": "string", "description": "English description for image generation", }, "size": { "type": "string", "description": f"Image size, supports 1024x1024, 1792x1024, 1024x1792, default: {default_size}", "default": default_size, "enum": ["1024x1024", "1792x1024", "1024x1792"] }, "output_path": { "type": "string", "description": "Optional: output file path (for server-side save). Image data is always returned to client." } }, "required": ["prompt", "size"] }, }, { "name": "edit_image", "description": "Edit an existing image with intelligent dimension preservation. Upload image data using base64 encoding.", "inputSchema": { "type": "object", "properties": { "image_data_base64": { "type": "string", "description": "Base64 encoded image data. Supports both raw base64 (iVBORw0K...) and Data URL format (...)" }, "prompt": { "type": "string", "description": "English description of how to edit the image" }, "size": { "type": "string", "description": "Optional size for edited image, if not specified uses original image dimensions", "enum": ["1024x1024", "1792x1024", "1024x1792"] }, "output_path": { "type": "string", "description": "Optional: output file path (for server-side save). Image data is always returned to client." } }, "required": ["image_data_base64", "prompt"] }, } ] } async def call_tool(name: str, arguments: dict[str, Any]): """Call a tool by name with arguments""" try: if name == "generate_image": return await handle_generate_image(arguments or {}) elif name == "edit_image": return await handle_edit_image(arguments or {}) else: return { "content": [ {"type": "text", "text": f"Error: Unknown tool '{name}'"} ] } except Exception as e: error_msg = f"Unexpected error in tool '{name}': {str(e)}" logger.error(error_msg) return {"content": [{"type": "text", "text": error_msg}]} async def handle_generate_image(arguments: dict[str, Any]): """Handle image generation request""" try: prompt = arguments.get("prompt", "") size = arguments.get("size", os.getenv("DEFAULT_IMAGE_SIZE", "1024x1024")) output_path = arguments.get("output_path") logger.info(f"Image generation request: prompt='{prompt}', size={size}, output_path={output_path}") # Get Azure configuration try: azure_config = get_azure_config() except (ValueError, Exception) as e: error_msg = f"Azure configuration error: {str(e)}" logger.error(f"Failed to get Azure configuration: {error_msg}") return {"content": [{"type": "text", "text": error_msg}]} # Validate prompt is in English if not is_english_text(prompt): error_msg = "Prompt must be in English. Please use English to describe the image you want to generate." logger.warning(f"Non-English prompt rejected: '{prompt}'") return {"content": [{"type": "text", "text": error_msg}]} # Validate image size if not validate_image_size(size): error_msg = f"Unsupported image size: {size}. Supported sizes: 1024x1024, 1792x1024, 1024x1792" logger.warning(f"Invalid image size: {size}") return {"content": [{"type": "text", "text": error_msg}]} async with AzureImageGenerator( base_url=azure_config["base_url"], api_key=azure_config["api_key"], deployment_name=azure_config["deployment_name"], model=azure_config["model"], api_version=azure_config["api_version"] ) as generator: # In HTTP mode, always get image bytes for return to client # If output_path is provided, also save to server result = await generator.generate_image( prompt=prompt, size=size, output_path=output_path ) # HTTP mode: always return image data to client if output_path: # Image was saved to file, read it back import aiofiles async with aiofiles.open(output_path, 'rb') as f: image_bytes = await f.read() image_b64 = base64.b64encode(image_bytes).decode('utf-8') logger.info(f"Image saved to server at: {result} and returning to client (size: {len(image_bytes)} bytes)") return { "content": [ {"type": "text", "text": f"Image successfully generated. Saved to server at: {result}"}, {"type": "image", "data": image_b64, "mimeType": "image/png"} ] } else: # result is bytes image_b64 = base64.b64encode(result).decode('utf-8') logger.info(f"Image generation successful, returning base64 data (size: {len(result)} bytes)") return { "content": [ {"type": "text", "text": f"Image generation successful, prompt: '{prompt}', size: {size}"}, {"type": "image", "data": image_b64, "mimeType": "image/png"} ] } except Exception as e: error_msg = f"Error generating image: {str(e)}" logger.error(f"Image generation failed: {error_msg}") return {"content": [{"type": "text", "text": error_msg}]} async def handle_edit_image(arguments: dict[str, Any]): """Handle image editing request""" try: image_data_base64 = arguments.get("image_data_base64") prompt = arguments.get("prompt", "") + " (and all other elements exactly the same)" size = arguments.get("size") # Optional size override output_path = arguments.get("output_path") # Validate input parameters - image_data_base64 is required in HTTP mode if not image_data_base64: error_msg = "'image_data_base64' parameter is required in HTTP mode" logger.error(error_msg) return {"content": [{"type": "text", "text": error_msg}]} logger.info(f"Image editing request: prompt='{prompt}', has_base64=True, output_path={output_path}") # Get Azure configuration try: azure_config = get_azure_config() except (ValueError, Exception) as e: error_msg = f"Azure configuration error: {str(e)}" logger.error(f"Failed to get Azure configuration: {error_msg}") return {"content": [{"type": "text", "text": error_msg}]} # Validate prompt is in English if not is_english_text(prompt): error_msg = "Prompt must be in English. Please use English to describe how you want to edit the image." logger.warning(f"Non-English prompt rejected: '{prompt}'") return {"content": [{"type": "text", "text": error_msg}]} # Prepare image data for processing import tempfile temp_input_path = None try: # Decode base64 data and save to temporary file try: # Handle Data URL format (e.g., "data:image/png;base64,...") base64_data = image_data_base64.strip() if base64_data.startswith('data:'): # Extract base64 data after the comma if ',' in base64_data: base64_data = base64_data.split(',', 1)[1] logger.info("Detected Data URL format, extracted base64 content") else: error_msg = "Invalid Data URL format: missing comma separator" logger.error(error_msg) return {"content": [{"type": "text", "text": error_msg}]} # Decode base64 string to bytes image_bytes = base64.b64decode(base64_data) logger.info(f"Decoded base64 image data (size: {len(image_bytes)} bytes)") # Validate image data by trying to open it with PIL import io from PIL import Image try: with Image.open(io.BytesIO(image_bytes)) as img: img_format = img.format.lower() if img.format else 'png' # Verify the image by loading it fully img.verify() logger.info(f"Validated image format: {img_format}, size: {img.size}") # Re-open for saving (verify() closes the file) img_for_save = Image.open(io.BytesIO(image_bytes)) # Create temporary file with correct extension with tempfile.NamedTemporaryFile(mode='wb', suffix=f'.{img_format}', delete=False) as temp_file: temp_input_path = temp_file.name # Save using PIL to ensure valid format img_for_save.save(temp_file, format=img_format.upper()) logger.info(f"Saved validated image to: {temp_input_path}") image_path_to_use = temp_input_path except Exception as img_error: error_msg = f"Invalid image data: {str(img_error)}" logger.error(f"Image validation failed: {error_msg}") return {"content": [{"type": "text", "text": error_msg}]} except Exception as e: error_msg = f"Failed to decode base64 image data: {str(e)}" logger.error(error_msg) return {"content": [{"type": "text", "text": error_msg}]} async with AzureImageGenerator( base_url=azure_config["base_url"], api_key=azure_config["api_key"], deployment_name=azure_config["deployment_name"], model=azure_config["model"], api_version=azure_config["api_version"] ) as generator: # Edit the image result = await generator.edit_image( image_path=image_path_to_use, prompt=prompt, size=size, output_path=output_path ) # HTTP mode: always return image data to client if output_path: # Image was saved to file, read it back import aiofiles async with aiofiles.open(output_path, 'rb') as f: image_bytes = await f.read() image_b64 = base64.b64encode(image_bytes).decode('utf-8') logger.info(f"Edited image saved to server at: {result} and returning to client (size: {len(image_bytes)} bytes)") return { "content": [ {"type": "text", "text": f"Image successfully edited. Saved to server at: {result}"}, {"type": "image", "data": image_b64, "mimeType": "image/png"} ] } else: # result is bytes image_b64 = base64.b64encode(result).decode('utf-8') logger.info(f"Image editing successful, returning base64 data (size: {len(result)} bytes)") return { "content": [ {"type": "text", "text": f"Image editing successful, edit prompt: '{prompt}'"}, {"type": "image", "data": image_b64, "mimeType": "image/png"} ] } finally: # Clean up temporary file if created if temp_input_path and os.path.exists(temp_input_path): try: os.unlink(temp_input_path) logger.info(f"Cleaned up temporary file: {temp_input_path}") except Exception as e: logger.warning(f"Failed to clean up temporary file {temp_input_path}: {e}") except Exception as e: error_msg = f"Error editing image: {str(e)}" logger.error(f"Image editing failed: {error_msg}") return {"content": [{"type": "text", "text": error_msg}]} # HTTP Handlers async def handle_jsonrpc(request: Request): """Handle JSON-RPC 2.0 requests""" try: body = await request.json() logger.info(f"Received JSON-RPC request: {body.get('method')}") # Extract request details method = body.get("method") params = body.get("params", {}) request_id = body.get("id") # Handle notifications (no response needed) if request_id is None: # This is a notification, not a request if method == "notifications/initialized": logger.info("Client initialized notification received") return Response(status_code=204) # No Content elif method.startswith("notifications/"): logger.info(f"Notification received: {method}") return Response(status_code=204) # No Content else: # Unknown notification logger.warning(f"Unknown notification: {method}") return Response(status_code=204) # No Content # Handle different methods (requests that need responses) if method == "initialize": result = { "protocolVersion": "2024-11-05", "capabilities": { "tools": {} }, "serverInfo": { "name": "azure-image-editor", "version": "1.0.0" } } elif method == "tools/list": result = await get_tools_list() elif method == "tools/call": tool_name = params.get("name") arguments = params.get("arguments", {}) result = await call_tool(tool_name, arguments) else: return JSONResponse({ "jsonrpc": "2.0", "id": request_id, "error": { "code": -32601, "message": f"Method not found: {method}" } }, status_code=400) return JSONResponse({ "jsonrpc": "2.0", "id": request_id, "result": result }) except json.JSONDecodeError as e: logger.error(f"Invalid JSON: {e}") return JSONResponse({ "jsonrpc": "2.0", "error": { "code": -32700, "message": "Parse error" } }, status_code=400) except Exception as e: logger.error(f"Error handling request: {e}") return JSONResponse({ "jsonrpc": "2.0", "id": body.get("id") if 'body' in locals() else None, "error": { "code": -32603, "message": str(e) } }, status_code=500) async def handle_health(request: Request): """Health check endpoint""" return Response("OK", status_code=200) def create_app(): """Create Starlette application""" routes = [ Route("/", endpoint=handle_jsonrpc, methods=["POST"]), Route("/health", endpoint=handle_health, methods=["GET"]), ] return Starlette(debug=True, routes=routes) async def main(): """Main server function""" # Verify Azure configuration before starting server try: logger.info("🔍 Verifying Azure configuration...") azure_config = get_azure_config() logger.info("✅ Azure configuration verification successful") logger.info(f" - Service URL: {azure_config['base_url']}") logger.info(f" - Deployment name: {azure_config['deployment_name']}") logger.info(f" - Model: {azure_config['model']}") logger.info(f" - API key: {'*' * (len(azure_config['api_key']) - 4) + azure_config['api_key'][-4:]}") except (ValueError, Exception) as e: logger.error(f"❌ Azure configuration verification failed: {str(e)}") logger.error("Please set the following required environment variables:") logger.error(" - AZURE_BASE_URL: Base URL for Azure AI service") logger.error(" - AZURE_API_KEY: API key for Azure AI service") logger.error(" - AZURE_DEPLOYMENT_NAME: Deployment model name") logger.error("Optional environment variables:") logger.error(" - AZURE_MODEL: Model name (defaults to flux.1-kontext-pro)") logger.error(" - AZURE_API_VERSION: API version (defaults to 2025-04-01-preview)") print("\n💡 Tip: Set these environment variables in a .env file", file=sys.stderr) sys.exit(1) # Get server configuration host = os.getenv("MCP_SERVER_HOST", "127.0.0.1") port = int(os.getenv("MCP_SERVER_PORT", "8000")) logger.info("🚀 Starting Azure Image Editor MCP HTTP Server") logger.info(f"📊 Default image size: {os.getenv('DEFAULT_IMAGE_SIZE', '1024x1024')}") logger.info(f"🌐 Server listening on http://{host}:{port}") logger.info(f"🔌 JSON-RPC endpoint: http://{host}:{port}/") logger.info(f"❤️ Health check: http://{host}:{port}/health") app = create_app() config = uvicorn.Config( app, host=host, port=port, log_level="info", access_log=True, ) server_instance = uvicorn.Server(config) await server_instance.serve() if __name__ == "__main__": try: asyncio.run(main()) except KeyboardInterrupt: logger.info("Server stopped by user") except Exception as e: logger.error(f"Server error: {e}") sys.exit(1)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/satomic/Azure-AI-Image-Editor-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server