시본AI
다양한 AI 에이전트 프레임워크와 AI 채용 도구를 통합하기 위한 Python 패키지입니다.
특징
AI 에이전트를 위한 맞춤형 채용 도구에 액세스하세요
인기 있는 AI 에이전트 프레임워크와 MCP 도구 통합:
랭체인
라마인덱스
크루AI
아그노
auth_token 생성
https://shivonai.com을 방문하여 auth_token을 생성하세요.
설치
지엑스피1
시작하기
LangChain 통합
from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from shivonai.lyra import langchain_toolkit
# Replace with your actual MCP server details
auth_token = "shivonai_auth_token"
# Get LangChain tools
tools = langchain_toolkit(auth_token)
# Print available tools
print(f"Available tools: {[tool.name for tool in tools]}")
# Initialize LangChain agent with tools
llm = ChatOpenAI(
temperature=0,
model_name="gpt-4-turbo",
openai_api_key="openai-api-key"
)
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
# Try running the agent with a simple task
try:
result = agent.run("what listing I have?")
print(f"Result: {result}")
except Exception as e:
print(f"Error: {e}")
LlamaIndex 통합
from llama_index.llms.openai import OpenAI
from llama_index.core.agent import ReActAgent
from shivonai.lyra import llamaindex_toolkit
# Set up OpenAI API key - you'll need this to use OpenAI models with LlamaIndex
os.environ["OPENAI_API_KEY"] = "openai_api_key"
# Your MCP server authentication details
MCP_AUTH_TOKEN = "shivonai_auth_token"
def main():
"""Test LlamaIndex integration with ShivonAI."""
print("Testing LlamaIndex integration with ShivonAI...")
# Get LlamaIndex tools from your MCP server
tools = llamaindex_toolkit(MCP_AUTH_TOKEN)
print(f"Found {len(tools)} MCP tools for LlamaIndex:")
for name, tool in tools.items():
print(f" - {name}: {tool.metadata.description[:60]}...")
# Create a LlamaIndex agent with these tools
llm = OpenAI(model="gpt-4")
# Convert tools dictionary to a list
tool_list = list(tools.values())
# Create the ReAct agent
agent = ReActAgent.from_tools(
tools=tool_list,
llm=llm,
verbose=True
)
# Test the agent with a simple query that should use one of your tools
# Replace this with a query that's relevant to your tools
query = "what listings I have?"
print("\nTesting agent with query:", query)
response = agent.chat(query)
print("\nAgent response:")
print(response)
if __name__ == "__main__":
main()
CrewAI 통합
from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI # or any other LLM you prefer
from shivonai.lyra import crew_toolkit
import os
os.environ["OPENAI_API_KEY"] = "oepnai_api_key"
llm = ChatOpenAI(temperature=0.7, model="gpt-4")
# Get CrewAI tools
tools = crew_toolkit("shivonai_auth_token")
# Print available tools
print(f"Available tools: {[tool.name for tool in tools]}")
# Create an agent with these tools
agent = Agent(
role="Data Analyst",
goal="Analyze data using custom tools",
backstory="You're an expert data analyst with access to custom tools",
tools=tools,
llm=llm # Provide the LLM here
)
# Create a task - note the expected_output field
task = Task(
description="what listings I have?",
expected_output="A detailed report with key insights and recommendations",
agent=agent
)
crew = Crew(
agents=[agent],
tasks=[task])
result = crew.kickoff()
print(result)
Agno 통합
from agno.agent import Agent
from agno.models.openai import OpenAIChat
from shivonai.lyra import agno_toolkit
import os
from agno.models.aws import Claude
# Replace with your actual MCP server details
auth_token = "Shivonai_auth_token"
os.environ["OPENAI_API_KEY"] = "oepnai_api_key"
# Get Agno tools
tools = agno_toolkit(auth_token)
# Print available tools
print(f"Available MCP tools: {list(tools.keys())}")
# Create an Agno agent with tools
agent = Agent(
model=OpenAIChat(id="gpt-3.5-turbo"),
tools=list(tools.values()),
markdown=True,
show_tool_calls=True
)
# Try the agent with a simple task
try:
agent.print_response("what listing are there?", stream=True)
except Exception as e:
print(f"Error: {e}")
특허
이 프로젝트는 독점 라이선스에 따라 라이선스가 부여되었습니다. 자세한 내용은 라이선스 파일을 참조하세요.
This server cannot be installed
remote-capable server
The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.
당사의 MCP 도구는 AI 기반 자동 면접 서비스를 향상시키도록 설계되었으며, 매끄럽고 상황에 맞는 후보자 평가 프로세스를 보장합니다. 이 도구는 고급 AI 모델을 활용하여 응답을 분석하고, 역량을 평가하고, 실시간 피드백을 제공합니다.
Related MCP Servers
- -securityFlicense-qualityMCP server that enables AI assistants to perform SEO automation tasks including keyword research, SERP analysis, and competitor analysis through Google Ads API integration.Last updated -1
- AsecurityFlicenseAqualityAn MCP server that supercharges AI assistants with powerful tools for software development, enabling research, planning, code generation, and project scaffolding through natural language interaction.Last updated -113978
- -securityAlicense-qualityA collection of custom MCP servers providing various AI-powered capabilities including web search, YouTube video analysis, GitHub repository analysis, reasoning, code generation/execution, and web crawling.Last updated -2MIT License
- -securityFlicense-qualityA service that converts OpenAPI specifications into MCP tools, enabling AI assistants to interact with your API endpoints through natural language.Last updated -