Skip to main content
Glama

Prompt Auto-Optimizer MCP

by sloth-wq

gepa_evaluate_prompt

Assess prompt performance across multiple tasks using parallel evaluations and iterative rollouts to optimize AI prompt effectiveness and reliability.

Instructions

Evaluate prompt candidate performance across multiple tasks

Input Schema

NameRequiredDescriptionDefault
parallelNoWhether to run evaluations in parallel
promptIdYesUnique identifier for the prompt to evaluate
rolloutCountNoNumber of evaluation rollouts per task
taskIdsYesList of task IDs to evaluate the prompt against

Input Schema (JSON Schema)

{ "properties": { "parallel": { "default": true, "description": "Whether to run evaluations in parallel", "type": "boolean" }, "promptId": { "description": "Unique identifier for the prompt to evaluate", "type": "string" }, "rolloutCount": { "default": 5, "description": "Number of evaluation rollouts per task", "type": "number" }, "taskIds": { "description": "List of task IDs to evaluate the prompt against", "items": { "type": "string" }, "type": "array" } }, "required": [ "promptId", "taskIds" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/sloth-wq/prompt-auto-optimizer-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server