Skip to main content
Glama

Memory Bank MCP

Memory Bank is an MCP server that helps teams create, manage, and access structured project documentation. It generates and maintains a set of interconnected Markdown documents that capture different aspects of project knowledge, from high-level goals to technical details and day-to-day progress.

Features

  • AI-Generated Documentation: Leverages Gemini API to automatically generate comprehensive project documentation

  • Structured Knowledge System: Maintains six core document types in a hierarchical structure

  • MCP Integration: Implements the Model Context Protocol for seamless integration with AI assistants

  • Customizable Location: Specify where you want your Memory Bank directory created

  • Document Templates: Pre-defined templates for project brief, product context, system patterns, etc.

  • AI-Assisted Updates: Update documents manually or regenerate them with AI assistance

  • Advanced Querying: Search across all documents with context-aware relevance ranking

Related MCP server: Linear

Installation

# Clone the repository git clone https://github.com/tuncer-byte/memory-bank-mcp.git cd memory-bank-mcp # Install dependencies npm install # Create .env file with your Gemini API key (optional) echo "GEMINI_API_KEY=your_api_key_here" > .env

Usage

Development Mode

# Start in development mode npm run dev

Production Mode

# Build the project npm run build # Start in production mode npm run start

MCP Configuration

To integrate Memory Bank with the Model Context Protocol (MCP), add the following configuration to your mcp.json file:

{ "memoryBank": { "command": "node", "args": ["/path/to/memory-bank-mcp/dist/index.js"], "env": { "GEMINI_API_KEY": "your_gemini_api_key_here" } } }

Replace /path/to/memory-bank-mcp/dist/index.js with the absolute path to your built index.js file, and add your Gemini API key (if applicable).

Example:

{ "memoryBank": { "command": "node", "args": ["/Users/username/memory-bank-mcp/dist/index.js"], "env": { "GEMINI_API_KEY": "AIzaSyXXXXXXXXXXXXXXXXXXXXXXXX" } } }

MCP Tools

Memory Bank MCP provides the following tools via the Model Context Protocol:

initialize_memory_bank

Creates a new Memory Bank structure with all document templates.

Parameters:

  • goal (string): Project goal description (min 10 characters)

  • geminiApiKey (string, optional): Gemini API key for document generation

  • location (string, optional): Absolute path where memory-bank folder will be created

Example:

await callTool({ name: "initialize_memory_bank", arguments: { goal: "Building a self-documenting AI-powered software development assistant", location: "/Users/username/Documents/projects/ai-assistant" } });

update_document

Updates a specific document in the Memory Bank.

Parameters:

  • documentType (enum): One of: projectbrief, productContext, systemPatterns, techContext, activeContext, progress

  • content (string, optional): New content for the document

  • regenerate (boolean, default: false): Whether to regenerate the document using AI

Example:

await callTool({ name: "update_document", arguments: { documentType: "projectbrief", content: "# Project Brief\n\n## Purpose\nTo develop an advanced and user-friendly AI..." } });

query_memory_bank

Searches across all documents with context-aware relevance ranking.

Parameters:

  • query (string): Search query (min 5 characters)

Example:

await callTool({ name: "query_memory_bank", arguments: { query: "system architecture components" } });

export_memory_bank

Exports all Memory Bank documents.

Parameters:

  • format (enum, default: "folder"): Export format, either "json" or "folder"

  • outputPath (string, optional): Custom output path for the export

Example:

await callTool({ name: "export_memory_bank", arguments: { format: "json", outputPath: "/Users/username/Documents/exports" } });

Document Types

Memory Bank organizes project knowledge into six core document types:

  1. Project Brief (projectbrief.md): Core document defining project objectives, scope, and vision

  2. Product Context (productContext.md): Documents product functionality from a user perspective

  3. System Patterns (systemPatterns.md): Establishes system architecture and component relationships

  4. Tech Context (techContext.md): Specifies technology stack and implementation details

  5. Active Context (activeContext.md): Tracks current tasks, open issues, and development focus

  6. Progress (progress.md): Documents completed work, milestones, and project history

License

MIT

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tuncer-byte/memory-bank-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server