Skip to main content
Glama

NLSQL MCP Server

MIT License
1

NLSQL MCP Server

An MCP (Model Context Protocol) server that exposes the functionality of the nl2sql Natural Language to SQL application as MCP tools. This allows any MCP-compatible client to convert natural language questions into SQL queries using AI.

Features

  • Database Connection: Connect to SQLite, PostgreSQL, and MySQL databases
  • Schema Analysis: Automatically analyze database structure and relationships
  • Natural Language to SQL: Convert plain English questions to SQL queries using AI
  • Query Execution: Execute SQL queries safely with configurable limits
  • Query Validation: Validate SQL syntax before execution
  • Sample Data: Access sample data from database tables
  • Built-in Prompts: Pre-configured prompts for common database tasks

Prerequisites

  1. NLSQL Application: This MCP server is a wrapper around the nl2sql application. You must install nl2sql first.
  2. OpenAI API Key: Required for natural language to SQL conversion
  3. Python 3.8+: Compatible with Python 3.8 and above

Installation

Step 1: Install the NLSQL Application (Required)

This MCP server requires the original nl2sql application to be installed first.

# Clone the original nl2sql application git clone https://github.com/tushar-badhwar/nl2sql.git cd nl2sql # Install dependencies pip install -r requirements.txt # Test the installation streamlit run main.py

Step 2: Install the MCP Server

# Navigate to the same parent directory where nl2sql is located cd .. # Now you should be in the directory containing nl2sql/ # Clone this MCP server git clone https://github.com/tushar-badhwar/nlsql-mcp-server.git cd nlsql-mcp-server # Install MCP server dependencies pip install -r requirements.txt # Or install in development mode pip install -e .

Step 3: Environment Setup

# Set your OpenAI API key export OPENAI_API_KEY="your_api_key_here" # Or create a .env file echo "OPENAI_API_KEY=your_api_key_here" > .env

Step 4: Verify Directory Structure

Ensure your directory structure looks like this:

parent_directory/ ├── nl2sql/ # Original nl2sql application (required dependency) │ ├── main.py │ ├── database_manager.py │ ├── crew_setup.py │ ├── agents.py │ ├── tasks.py │ └── nba.sqlite └── nlsql-mcp-server/ # This MCP server ├── src/ ├── tests/ ├── README.md └── requirements.txt

Important: The MCP server automatically looks for the nl2sql directory in the parent directory. If you have a different setup, you may need to adjust the path in src/nlsql_mcp_server/nlsql_client.py.

Running the Server

Standalone Mode

# Run the server directly python -m nlsql_mcp_server.server # Or using the console script (after pip install) nlsql-mcp-server

With MCP Client

Configure your MCP client to use this server. Example configuration:

{ "mcpServers": { "nlsql": { "command": "python", "args": ["-m", "nlsql_mcp_server.server"], "cwd": "/path/to/nlsql-mcp-server", "env": { "OPENAI_API_KEY": "your_api_key_here" } } } }

Available Tools

Database Connection Tools

connect_database

Connect to SQLite, PostgreSQL, or MySQL database.

Parameters:

  • db_type (required): "sqlite", "postgresql", or "mysql"
  • file_path: Path to SQLite file (SQLite only)
  • host, port, database, username, password: Connection details (PostgreSQL/MySQL)
connect_sample_database

Connect to the built-in NBA sample database for testing.

Schema Analysis Tools

analyze_schema

Analyze database schema and structure using AI.

Parameters:

  • force_refresh (optional): Force refresh of schema cache
get_database_info

Get detailed database information including tables, columns, and relationships.

get_table_sample

Get sample data from a specific table.

Parameters:

  • table_name (required): Name of the table
  • limit (optional): Number of rows to return (default: 5)

Natural Language to SQL Tools

natural_language_to_sql

Convert natural language question to SQL query using AI.

Parameters:

  • question (required): Natural language question
  • skip_schema (optional): Skip schema analysis for faster processing

SQL Execution Tools

execute_sql_query

Execute SQL query on connected database.

Parameters:

  • sql_query (required): SQL query to execute
  • limit (optional): Maximum rows to return (default: 100)
validate_sql_query

Validate SQL query syntax and structure.

Parameters:

  • sql_query (required): SQL query to validate

Utility Tools

get_connection_status

Get current database connection status.

disconnect_database

Disconnect from current database.

Available Prompts

analyze_database

Comprehensive database analysis workflow.

generate_sql_query

Natural language to SQL generation workflow.

troubleshoot_sql

SQL query troubleshooting workflow.

Usage Examples

Using with Claude Desktop

  1. Configure Claude Desktop to use this MCP server
  2. Connect to a database:
    Use the connect_sample_database tool to connect to the NBA sample database
  3. Ask natural language questions:
    Use the natural_language_to_sql tool with the question "How many teams are in the NBA?"
  4. Execute queries:
    Use the execute_sql_query tool to run the generated SQL

Example Workflow

  1. Connect: connect_sample_database
  2. Analyze: analyze_schema
  3. Query: natural_language_to_sql with question "List all teams from California"
  4. Execute: execute_sql_query with the generated SQL
  5. Explore: get_table_sample for additional data exploration

Advanced Usage

Custom Database Connection

{ "tool": "connect_database", "arguments": { "db_type": "postgresql", "host": "localhost", "port": 5432, "database": "mydb", "username": "user", "password": "password" } }

Performance Optimization

  • Use skip_schema: true in natural_language_to_sql for faster queries after initial schema analysis
  • Set appropriate limit values for large result sets
  • Use get_table_sample to explore data before writing complex queries

Troubleshooting

Common Issues

  1. "Could not find the nl2sql application" or "nlsql modules not found"
    • Solution: Install the original nl2sql application first
    • Command: git clone https://github.com/tushar-badhwar/nl2sql.git
    • Verify: Check that nl2sql/database_manager.py exists
    • Structure: Ensure both nl2sql/ and nlsql-mcp-server/ are in the same parent directory
  2. "OpenAI API key not found"
    • Set the OPENAI_API_KEY environment variable
    • Verify the API key is valid
  3. Database connection failures
    • Check database credentials and connectivity
    • Ensure database server is running
    • Verify firewall settings for remote databases
  4. Import errors
    • Install all required dependencies: pip install -r requirements.txt
    • Check Python version compatibility (3.8+)

Debug Mode

Enable debug logging:

export PYTHONPATH=/path/to/nlsql-mcp-server/src python -c " import logging logging.basicConfig(level=logging.DEBUG) from nlsql_mcp_server.server import main import asyncio asyncio.run(main()) "

Testing

The repository includes comprehensive tests to verify your setup:

# Basic functionality test (no API key required) python3 tests/test_basic.py # Full setup validation python3 tests/test_setup.py # AI functionality test (requires OpenAI API key) python3 tests/test_with_api.py

See tests/README.md for detailed testing documentation.

Development

Project Structure

src/ ├── nlsql_mcp_server/ │ ├── __init__.py │ ├── server.py # Main MCP server │ ├── tools.py # MCP tool definitions │ └── nlsql_client.py # Interface to nlsql app ├── pyproject.toml └── requirements.txt

Adding New Tools

  1. Define the tool in tools.py
  2. Add handler method in NLSQLTools.call_tool()
  3. Implement the functionality in nlsql_client.py
  4. Update documentation

Testing

# Install development dependencies pip install -e ".[dev]" # Run tests pytest # Run type checking mypy src/ # Format code black src/ isort src/

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

Support

For issues and questions:

  • Create an issue in the GitHub repository
  • Check the troubleshooting section above
  • Review the nlsql application documentation

Related MCP Servers

  • -
    security
    A
    license
    -
    quality
    This is a Model Context Protocol (MCP) server for executing SQL queries against Databricks using the Statement Execution API. It enables AI assistants to directly query Databricks data warehouses, analyze database schemas, and retrieve query results in a structured format
    Last updated -
    12
    Python
    MIT License
    • Linux
    • Apple
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol (MCP) server that enables AI assistants to interact with MySQL databases by executing SQL queries and checking database connectivity.
    Last updated -
    TypeScript
    MIT License
    • Apple
    • Linux
  • -
    security
    F
    license
    -
    quality
    A FastMCP server that provides natural language interaction with MS SQL databases, enabling users to query data, list tables, describe structures, and execute database operations through a conversational AI interface.
    Last updated -
    Python
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol (MCP) server that provides read-only TDengine database queries for AI assistants, allowing users to execute queries, explore database structures, and investigate data directly from AI-powered tools.
    Last updated -
    4
    Python
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tushar-badhwar/nlsql-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server