Skip to main content
Glama

Nano Banana MCP Server 🍌

A production-ready Model Context Protocol (MCP) server that provides AI-powered image generation capabilities through Google's Gemini models with intelligent model selection.

⭐ NEW: Gemini 3 Pro Image Support! 🚀

Now featuring Nano Banana Pro - Google's latest and most powerful image generation model:

  • 🏆 Professional 4K Quality: Generate stunning images up to 3840px resolution

  • 🌐 Google Search Grounding: Access real-world knowledge for factually accurate images

  • 🧠 Advanced Reasoning: Configurable thinking levels for complex compositions

  • 🎯 Superior Text Rendering: Crystal-clear text in images at high resolution

  • 🎨 Enhanced Understanding: Better context comprehension for complex prompts

Related MCP server: MCP Gemini API Server

✨ Features

  • 🎨 Multi-Model AI Image Generation: Intelligent selection between Flash (speed) and Pro (quality) models

  • Gemini 2.5 Flash Image: Fast generation (1024px) for rapid prototyping

  • 🏆 Gemini 3 Pro Image: High-quality up to 4K with Google Search grounding

  • 🤖 Smart Model Selection: Automatically chooses optimal model based on your prompt

  • 📐 Aspect Ratio Control ⭐ NEW: Specify output dimensions (1:1, 16:9, 9:16, 21:9, and more)

  • 📋 Smart Templates: Pre-built prompt templates for photography, design, and editing

  • 📁 File Management: Upload and manage files via Gemini Files API

  • 🔍 Resource Discovery: Browse templates and file metadata through MCP resources

  • 🛡️ Production Ready: Comprehensive error handling, logging, and validation

  • High Performance: Optimized architecture with intelligent caching

🚀 Quick Start

Prerequisites

  1. Google Gemini API Key - Get one free here

  2. Python 3.11+ (for development only)

Installation

Option 1: From MCP Registry (Recommended) This server is available in the Model Context Protocol Registry. Search for "nanobanana" or use the MCP name below with your MCP client.

mcp-name: io.github.zhongweili/nanobanana-mcp-server

Option 2: Using uvx

uvx nanobanana-mcp-server@latest

Option 3: Using pip

pip install nanobanana-mcp-server

🔧 Configuration

Claude Desktop

Add to your claude_desktop_config.json:

{ "mcpServers": { "nanobanana": { "command": "uvx", "args": ["nanobanana-mcp-server@latest"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" } } } }

Configuration file locations:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

  • Windows: %APPDATA%\Claude\claude_desktop_config.json

Claude Code (VS Code Extension)

Install and configure in VS Code:

  1. Install the Claude Code extension

  2. Open Command Palette (Cmd/Ctrl + Shift + P)

  3. Run "Claude Code: Add MCP Server"

  4. Configure:

    { "name": "nanobanana", "command": "uvx", "args": ["nanobanana-mcp-server@latest"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" } }

Cursor

Add to Cursor's MCP configuration:

{ "mcpServers": { "nanobanana": { "command": "uvx", "args": ["nanobanana-mcp-server@latest"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" } } } }

Continue.dev (VS Code/JetBrains)

Add to your config.json:

{ "mcpServers": [ { "name": "nanobanana", "command": "uvx", "args": ["nanobanana-mcp-server@latest"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" } } ] }

Open WebUI

Configure in Open WebUI settings:

{ "mcp_servers": { "nanobanana": { "command": ["uvx", "nanobanana-mcp-server@latest"], "env": { "GEMINI_API_KEY": "your-gemini-api-key-here" } } } }

Gemini CLI / Generic MCP Client

# Set environment variable export GEMINI_API_KEY="your-gemini-api-key-here" # Run server in stdio mode uvx nanobanana-mcp-server@latest # Or with pip installation python -m nanobanana_mcp_server.server

🤖 Model Selection

Nano Banana supports two Gemini models with intelligent automatic selection:

🏆 Pro Model - Nano Banana Pro (Gemini 3 Pro Image) ⭐ NEW!

Google's latest and most advanced image generation model

  • Quality: Professional-grade, production-ready

  • Resolution: Up to 4K (3840px) - highest available

  • Speed: ~5-8 seconds per image

  • Special Features:

    • 🌐 Google Search Grounding: Leverages real-world knowledge for accurate, contextual images

    • 🧠 Advanced Reasoning: Configurable thinking levels (LOW/HIGH) for complex compositions

    • 📐 Media Resolution Control: Fine-tune vision processing detail (LOW/MEDIUM/HIGH/AUTO)

    • 📝 Superior Text Rendering: Exceptional clarity for text-in-image generation

    • 🎨 Enhanced Context Understanding: Better interpretation of complex, narrative prompts

  • Best for: Production assets, marketing materials, professional photography, high-fidelity outputs, images requiring text, factual accuracy

  • Cost: Higher per image (premium quality)

⚡ Flash Model (Gemini 2.5 Flash Image)

Fast, reliable model for rapid iteration

  • Speed: Very fast (2-3 seconds)

  • Resolution: Up to 1024px

  • Quality: High quality for everyday use

  • Best for: Rapid prototyping, iterations, high-volume generation, drafts, sketches

  • Cost: Lower per image

🤖 Automatic Selection (Recommended)

By default, the server uses AUTO mode which intelligently analyzes your prompt and requirements:

Pro Model Selected When:

  • Quality keywords detected: "4K", "professional", "production", "high-res", "HD"

  • High resolution requested: resolution="4k" or resolution="high"

  • Google Search grounding enabled: enable_grounding=True

  • High thinking level requested: thinking_level="HIGH"

  • Multi-image conditioning with multiple input images

Flash Model Selected When:

  • Speed keywords detected: "quick", "draft", "sketch", "rapid"

  • High-volume batch generation: n > 2

  • Standard or lower resolution requested

  • No special Pro features required

Usage Examples

# Automatic selection (recommended) "Generate a professional 4K product photo" # → Pro model (quality keywords + 4K) "Quick sketch of a cat" # → Flash model (speed keyword) "Create a diagram with clear text labels" # → Pro model (text rendering) "Draft mockup for website hero section" # → Flash model (draft keyword) # Explicit model selection generate_image( prompt="A scenic landscape", model_tier="flash" # Force Flash model for speed ) # Leverage Nano Banana Pro features generate_image( prompt="Professional product photo of vintage camera on wooden desk", model_tier="pro", # Use Pro model resolution="4k", # 4K resolution (Pro-only) thinking_level="HIGH", # Enhanced reasoning enable_grounding=True, # Use Google Search for accuracy media_resolution="HIGH" # High-detail vision processing ) # Pro model for high-quality text rendering generate_image( prompt="Infographic showing 2024 market statistics with clear labels", model_tier="pro", # Pro excels at text rendering resolution="4k" # Maximum clarity for text ) # Control aspect ratio for different formats ⭐ NEW! generate_image( prompt="Cinematic landscape at sunset", aspect_ratio="21:9" # Ultra-wide cinematic format ) generate_image( prompt="Instagram post about coffee", aspect_ratio="1:1" # Square format for social media ) generate_image( prompt="YouTube thumbnail design", aspect_ratio="16:9" # Standard video format ) generate_image( prompt="Mobile wallpaper of mountain vista", aspect_ratio="9:16" # Portrait format for phones )

📐 Aspect Ratio Control ⭐ NEW!

Control the output image dimensions with the aspect_ratio parameter:

Supported Aspect Ratios:

  • 1:1 - Square (Instagram, profile pictures)

  • 4:3 - Classic photo format

  • 3:4 - Portrait orientation

  • 16:9 - Widescreen (YouTube thumbnails, presentations)

  • 9:16 - Mobile portrait (phone wallpapers, stories)

  • 21:9 - Ultra-wide cinematic

  • 2:3, 3:2, 4:5, 5:4 - Various photo formats

# Examples for different use cases generate_image( prompt="Product showcase for e-commerce", aspect_ratio="3:4", # Portrait format, good for product pages model_tier="pro" ) generate_image( prompt="Social media banner for Facebook", aspect_ratio="16:9" # Landscape banner format )

Note: Aspect ratio works with both Flash and Pro models. For best results with specific aspect ratios at high resolution, use the Pro model with resolution="4k".

⚙️ Environment Variables

Configuration options:

# Required GEMINI_API_KEY=your-gemini-api-key-here # Model Selection (optional) NANOBANANA_MODEL=auto # Options: flash, pro, auto (default: auto) # Optional IMAGE_OUTPUT_DIR=/path/to/image/directory # Default: ~/nanobanana-images LOG_LEVEL=INFO # DEBUG, INFO, WARNING, ERROR LOG_FORMAT=standard # standard, json, detailed

🐛 Troubleshooting

Common Issues

"GEMINI_API_KEY not set"

  • Add your API key to the MCP server configuration in your client

  • Get a free API key at Google AI Studio

"Server failed to start"

  • Ensure you're using the latest version: uvx nanobanana-mcp-server@latest

  • Check that your client supports MCP (Claude Desktop 0.10.0+)

"Permission denied" errors

  • The server creates images in ~/nanobanana-images by default

  • Ensure write permissions to your home directory

Development Setup

For local development:

# Clone repository git clone https://github.com/zhongweili/nanobanana-mcp-server.git cd nanobanana-mcp-server # Install with uv uv sync # Set environment export GEMINI_API_KEY=your-api-key-here # Run locally uv run python -m nanobanana_mcp_server.server

📄 License

MIT License - see LICENSE for details.

🆘 Support

One-click Deploy
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/zhongweili/nanobanana-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server