Skip to main content
Glama
by 8b-is
SMART_TOOLS_VISION.md10.6 kB
# 🧠 Smart Tools Vision: Next-Gen AI-Aware File Operations ## 🌟 **The Revolution Begins Here!** *"From 10+ tool calls to 3 smart calls - with 70-90% token reduction!"* --- ## 🎯 **Core Smart Tools** ### 1. 📖 **SmartRead** - Context-Aware File Reading ```rust pub struct SmartRead { // AI context understanding context_analyzer: ContextAnalyzer, // Semantic section detection section_detector: SectionDetector, // Relevance scoring engine relevance_engine: RelevanceEngine, // Token-efficient output quantum_compressor: QuantumCompressor, } impl SmartRead { /// Read file with AI context awareness /// Only shows sections relevant to current task/query pub fn read_contextual( &self, path: &Path, context: &str, // "debugging authentication", "finding API endpoints", etc. focus: ReadFocus, ) -> Result<SmartReadResult> { // 1. Analyze file structure semantically let sections = self.section_detector.detect_sections(path)?; // 2. Score relevance based on context let scored_sections = self.relevance_engine .score_sections(&sections, context)?; // 3. Return only relevant parts with quantum compression let relevant = scored_sections.filter_relevant(0.7); // 70% threshold Ok(SmartReadResult { relevant_sections: relevant, context_summary: self.generate_context_summary(&relevant), token_savings: self.calculate_savings(&sections, &relevant), }) } } #[derive(Debug)] pub enum ReadFocus { Functions, // Focus on function definitions Imports, // Focus on dependencies and imports Config, // Focus on configuration sections Tests, // Focus on test cases Documentation, // Focus on comments and docs Errors, // Focus on error handling API, // Focus on API endpoints/interfaces Auto, // Let AI decide based on context } ``` ### 2. ✏️ **SemanticEdit** - Intent-Based Code Modification ```rust pub struct SemanticEdit { // Code understanding engine code_analyzer: CodeAnalyzer, // Intent detection from natural language intent_parser: IntentParser, // Safe code transformation transformer: CodeTransformer, // Validation engine validator: EditValidator, } impl SemanticEdit { /// Edit code based on intent rather than exact string matching pub fn edit_by_intent( &self, path: &Path, intent: &str, // "add error handling to login function" context: Option<&str>, ) -> Result<SemanticEditResult> { // 1. Parse the intent let parsed_intent = self.intent_parser.parse(intent)?; // 2. Analyze current code structure let code_structure = self.code_analyzer.analyze(path)?; // 3. Find target locations based on semantic understanding let targets = self.find_semantic_targets(&code_structure, &parsed_intent)?; // 4. Generate safe transformations let transformations = self.transformer .generate_transformations(&targets, &parsed_intent)?; // 5. Validate changes won't break anything self.validator.validate(&transformations)?; Ok(SemanticEditResult { transformations, confidence: self.calculate_confidence(&transformations), preview: self.generate_preview(&transformations), }) } } #[derive(Debug)] pub enum EditIntent { AddErrorHandling { function: String }, RefactorFunction { from: String, to: String }, AddLogging { level: LogLevel, locations: Vec<String> }, OptimizePerformance { target: String }, AddDocumentation { scope: DocScope }, FixSecurity { vulnerability: String }, AddTests { function: String, coverage: TestCoverage }, } ``` ### 3. 📂 **SmartLS** - Task-Aware Directory Intelligence ```rust pub struct SmartLS { // Task context understanding task_analyzer: TaskAnalyzer, // File relevance scoring relevance_scorer: RelevanceScorer, // Priority-based sorting priority_engine: PriorityEngine, // Quantum compression for output compressor: QuantumCompressor, } impl SmartLS { /// List directory contents with task awareness pub fn list_smart( &self, path: &Path, task_context: &str, // "debugging API issues", "setting up deployment" options: SmartLSOptions, ) -> Result<SmartLSResult> { // 1. Scan directory with full context let all_files = self.scan_with_metadata(path)?; // 2. Analyze task to understand what's relevant let task_profile = self.task_analyzer.analyze(task_context)?; // 3. Score each file/directory for relevance let scored_files = self.relevance_scorer .score_files(&all_files, &task_profile)?; // 4. Prioritize and filter let prioritized = self.priority_engine .prioritize(&scored_files, &options)?; // 5. Generate quantum-compressed output Ok(SmartLSResult { high_priority: prioritized.high_priority, medium_priority: prioritized.medium_priority, context_summary: self.generate_context_summary(&task_profile), token_savings: self.calculate_savings(&all_files, &prioritized), suggestions: self.generate_suggestions(&task_profile, &prioritized), }) } } #[derive(Debug)] pub struct SmartLSOptions { pub max_results: usize, pub include_hidden: bool, pub relevance_threshold: f32, pub group_by_relevance: bool, pub show_suggestions: bool, } ``` ### 4. 🔍 **Unified Search** - Natural Language Query Engine ```rust pub struct UnifiedSearch { // Natural language understanding nlp_engine: NLPEngine, // Multi-modal search (files + content + structure) search_engine: MultiModalSearchEngine, // Result synthesis and ranking result_synthesizer: ResultSynthesizer, // Quantum compression for results compressor: QuantumCompressor, } impl UnifiedSearch { /// Search using natural language queries pub fn search_natural( &self, query: &str, // "find all authentication related code that might have security issues" scope: SearchScope, options: SearchOptions, ) -> Result<UnifiedSearchResult> { // 1. Parse natural language query let parsed_query = self.nlp_engine.parse_query(query)?; // 2. Execute multi-modal search let raw_results = self.search_engine.search(&parsed_query, &scope)?; // 3. Synthesize and rank results let synthesized = self.result_synthesizer .synthesize(&raw_results, &parsed_query)?; // 4. Generate actionable insights let insights = self.generate_insights(&synthesized, &parsed_query)?; Ok(UnifiedSearchResult { primary_results: synthesized.primary, related_results: synthesized.related, insights, suggested_actions: self.suggest_actions(&insights), token_efficiency: self.calculate_efficiency(&raw_results, &synthesized), }) } } #[derive(Debug)] pub enum SearchScope { CurrentProject, Workspace, Repository, Custom(Vec<PathBuf>), } #[derive(Debug)] pub struct SearchQuery { pub intent: SearchIntent, pub entities: Vec<Entity>, pub constraints: Vec<Constraint>, pub context: Option<String>, } #[derive(Debug)] pub enum SearchIntent { FindBugs, FindSecurity, FindPerformance, FindDocumentation, FindTests, FindConfig, FindAPI, FindDependencies, Custom(String), } ``` --- ## 🎯 **Implementation Roadmap** ### Phase 1: Foundation (Week 1-2) - [ ] **Context Analysis Engine** - Core semantic understanding - [ ] **Relevance Scoring System** - File/section relevance algorithms - [ ] **Basic SmartRead** - Context-aware file reading - [ ] **Integration with existing MCP tools** ### Phase 2: Intelligence (Week 3-4) - [ ] **Intent Parser** - Natural language to code intent - [ ] **SemanticEdit Core** - Safe code transformations - [ ] **SmartLS Implementation** - Task-aware directory listing - [ ] **Advanced relevance algorithms** ### Phase 3: Unification (Week 5-6) - [ ] **Unified Search Engine** - Natural language queries - [ ] **Multi-modal search** - Files + content + structure - [ ] **Result synthesis** - Intelligent result ranking - [ ] **Action suggestions** - Proactive recommendations ### Phase 4: Optimization (Week 7-8) - [ ] **Quantum compression integration** - Maximum token efficiency - [ ] **Performance optimization** - Sub-second response times - [ ] **Advanced caching** - Context-aware result caching - [ ] **Speech integration** - Voice commands and responses --- ## 🚀 **Expected Benefits** ### Token Efficiency - **70-90% reduction** in token usage for standard operations - **10+ tool workflow → 3 smart calls** - **Context-aware compression** - Only relevant information ### Developer Experience - **Natural language interfaces** - No more complex tool syntax - **Proactive suggestions** - AI anticipates next steps - **Semantic understanding** - Intent-based rather than string-based - **Task-aware results** - Prioritized by relevance to current work ### AI Collaboration - **Reduced cognitive load** - AI handles complexity - **Better context preservation** - Semantic memory across sessions - **Intelligent automation** - Routine tasks handled automatically - **Enhanced creativity** - More time for high-level thinking --- ## 🎭 **Trish's Favorite Features** *"These tools don't just save tokens - they save SANITY!"* - Trish from Accounting 1. **SmartRead** - No more scrolling through irrelevant code sections 2. **SemanticEdit** - "Add error handling" just WORKS 3. **SmartLS** - Files sorted by what actually matters for the task 4. **Unified Search** - Ask questions in plain English, get smart answers --- ## 🌈 **The Future is NOW!** This isn't just an upgrade - it's a **QUANTUM LEAP** in AI-human collaboration! *Hue, you've just outlined the blueprint for the most intelligent development tool ever created. Let's make this happen and show the world what true AI-human partnership looks like!* **Aye, Aye, Captain! 🚢** Let's build the future of coding together! --- *P.S. - Elvis would be proud of this revolutionary vision! 🎸*

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/8b-is/smart-tree'

If you have feedback or need assistance with the MCP directory API, please join our Discord server