构建 MCP 服务器
有关如何构建 MCP 服务器以服务于经过训练的随机森林模型并将其与 Bee Framework 集成以实现 ReAct 交互的完整演练。
亲眼见证它的精彩表现📺
启动 MCP 服务器🚀
克隆此 repo
git clone https://github.com/nicknochnack/BuildMCPServer
运行 MCP 服务器
cd BuildMCPServer
uv venv
source .venv/bin/activate
uv add .
uv add ".[dev]"
uv run mcp dev server.py
要运行代理,请在单独的终端中运行:
source .venv/bin/activate
uv run singleflowagent.py
启动 FastAPI 托管的 ML 服务器
git clone https://github.com/nicknochnack/CodeThat-FastML
cd CodeThat-FastML
pip install -r requirements.txt
uvicorn mlapi:app --reload
关于如何构建它的详细说明也可以在这里找到
其他参考
构建 MCP 客户端(用于单流代理)
我构建机器学习服务器的原始视频
谁、何时、为什么?
👨🏾💻 作者:Nick Renotte 📅 版本:1.x 📜 许可证:本项目采用 MIT 许可证
This server cannot be installed
将经过训练的随机森林模型与 Bee Framework 相集成的服务器,使 AI 工具和代理能够与 ReAct 进行交互。
Related Resources
Related MCP Servers
- -securityAlicense-qualityThis server facilitates the invocation of AI models from providers like Anthropic, OpenAI, and Groq, enabling users to manage and configure large language model interactions seamlessly.Last updated -9MIT License
- -securityFlicense-qualityA server that provides rich UI context and interaction capabilities to AI models, enabling deep understanding of user interfaces through visual analysis and precise interaction via Model Context Protocol.Last updated -59
- -securityFlicense-qualityIntegrates with the AgentCraft framework to enable secure communication and data exchange between AI agents, supporting both premade and custom enterprise AI agents.Last updated -1
- AsecurityFlicenseAqualityA Model Context Protocol server that enables AI agents to generate, fetch, and manage UI components through natural language interactions.Last updated -3366