Skip to main content
Glama

TA-Lib MCP Server

by phuihock
ht_trendline.py1.28 kB
"""Hilbert Transform - Instantaneous Trendline (HT_TRENDLINE) adapter using TA-Lib.""" from typing import Dict, Any import numpy as np import talib as ta from .base import BaseIndicator from ..models.market_data import MarketData from ..models.indicator_result import IndicatorResult class HTTrendlineIndicator(BaseIndicator): def __init__(self): super().__init__(name="ht_trendline", description="Hilbert Transform - Instantaneous Trendline") @property def input_schema(self) -> Dict[str, Any]: return {"type": "object", "properties": {"close_prices": {"type": "array", "items": {"type": "number"}}}, "required": ["close_prices"]} async def calculate(self, market_data: MarketData, options: Dict[str, Any] = None) -> IndicatorResult: close = np.asarray(market_data.close, dtype=float) try: out = ta.HT_TRENDLINE(close) return IndicatorResult( indicator_name=self.name, success=True, values={"ht_trendline": out.tolist()}, metadata={"input_points": len(close), "output_points": len(out)}, ) except Exception as e: return IndicatorResult(indicator_name=self.name, success=False, values={}, error_message=str(e))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/phuihock/mcp-talib'

If you have feedback or need assistance with the MCP directory API, please join our Discord server