Skip to main content
Glama

TA-Lib MCP Server

by phuihock
sar.py1.72 kB
"""Parabolic SAR (SAR) adapter using TA-Lib.""" from typing import Dict, Any import numpy as np import talib as ta from .base import BaseIndicator from ..models.market_data import MarketData from ..models.indicator_result import IndicatorResult class SARIndicator(BaseIndicator): def __init__(self): super().__init__(name="sar", description="Parabolic SAR") @property def input_schema(self) -> Dict[str, Any]: return { "type": "object", "properties": { "high_prices": {"type": "array", "items": {"type": "number"}}, "low_prices": {"type": "array", "items": {"type": "number"}}, "acceleration": {"type": "number", "default": 0.02}, "maximum": {"type": "number", "default": 0.2}, }, "required": ["high_prices", "low_prices"], } async def calculate(self, market_data: MarketData, options: Dict[str, Any] = None) -> IndicatorResult: if options is None: options = {} acceleration = options.get("acceleration", 0.02) maximum = options.get("maximum", 0.2) high = np.asarray(market_data.high or [], dtype=float) low = np.asarray(market_data.low or [], dtype=float) try: out = ta.SAR(high, low, acceleration=acceleration, maximum=maximum) return IndicatorResult(indicator_name=self.name, success=True, values={"sar": out.tolist()}, metadata={"acceleration": acceleration, "maximum": maximum, "input_points": len(high), "output_points": len(out)}) except Exception as e: return IndicatorResult(indicator_name=self.name, success=False, values={}, error_message=str(e))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/phuihock/mcp-talib'

If you have feedback or need assistance with the MCP directory API, please join our Discord server