Skip to main content
Glama
by ricleedo
api.ts1.86 kB
import axios from "axios"; const API_BASE_URL = "https://ai-embeddings.vercel.app"; export interface GenerateEmbeddingsRequest { content: string; path: string; type?: string; source?: string; parentPath?: string; meta?: Record<string, any>; } export interface GenerateEmbeddingsResponse { success: boolean; page?: { id: number; path: string; type: string; source: string; }; sections?: number; error?: string; } export interface VectorSearchRequest { prompt: string; match_count?: number; } export interface VectorSearchResponse { contextText: string; error?: string; } export class EmbeddingApiClient { async generateEmbeddings( request: GenerateEmbeddingsRequest ): Promise<GenerateEmbeddingsResponse> { try { const response = await axios.post( `${API_BASE_URL}/api/generate-embeddings`, request ); return response.data; } catch (error: unknown) { if (axios.isAxiosError(error) && error.response) { return { success: false, error: error.response.data.error || "Failed to generate embeddings", }; } return { success: false, error: "Failed to connect to embedding service", }; } } async vectorSearch( request: VectorSearchRequest ): Promise<VectorSearchResponse> { try { const response = await axios.post( `${API_BASE_URL}/api/vector-search`, request ); return response.data; } catch (error: unknown) { if (axios.isAxiosError(error) && error.response) { return { contextText: "", error: error.response.data.error || "Failed to perform vector search", }; } return { contextText: "", error: "Failed to connect to embedding service", }; } } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ricleedo/Knowledge-EmbeddingAPI-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server