Skip to main content
Glama
by ricleedo
test.ts942 B
import { EmbeddingApiClient } from "./api.js"; async function testEmbeddingStorage() { const apiClient = new EmbeddingApiClient(); console.log("Testing Embedding Storage API Client"); // Test storing content const storeResult = await apiClient.generateEmbeddings({ content: "This is some test content about artificial intelligence. AI is transforming many industries through machine learning and neural networks.", path: "/test/ai-content", type: "markdown", source: "test-script", }); console.log("\n--- Store Content Result ---"); console.log(storeResult); // Test searching content const searchResult = await apiClient.vectorSearch({ prompt: "Tell me about machine learning", match_count: 3, }); console.log("\n--- Search Content Result ---"); console.log(searchResult); } testEmbeddingStorage().catch((error) => { console.error("Test failed:", error); process.exit(1); });

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ricleedo/Knowledge-EmbeddingAPI-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server