The Random Number MCP server provides both standard pseudorandom and cryptographically secure random generation capabilities, built on Python's standard library:
- Generate random integers: Get a random number within a specified inclusive range using
random_int
- Generate random floats: Get a random decimal number within a range (defaults to 0.0-1.0) using
random_float
- Choose random items: Select items from a list with optional weights using
random_choices
- Shuffle items: Return a list with items in random order using
random_shuffle
- Create secure hex tokens: Generate cryptographically secure random hex tokens using
secure_token_hex
- Generate secure random integers: Get cryptographically secure random integers below a specified upper bound using
secure_random_int
The server distinguishes between fast pseudorandom functions for general use cases and more secure functions for security-sensitive applications.
Leverages Python's standard library (random and secrets modules) to provide both standard pseudorandom functions and cryptographically secure random generation capabilities.
Random Number MCP
Essential random number generation utilities from the Python standard library, including pseudorandom and cryptographically secure operations for integers, floats, weighted selections, list shuffling, and secure token generation.
📺 Demo Video
https://github.com/user-attachments/assets/303a441a-2b10-47e3-b2a5-c8b51840e362
🎲 Tools
Tool | Purpose | Python function |
---|---|---|
random_int | Generate random integers | random.randint() |
random_float | Generate random floats | random.uniform() |
random_choices | Choose items from a list (optional weights) | random.choices() |
random_shuffle | Return a new list with items shuffled | random.sample() |
random_sample | Choose k unique items from population | random.sample() |
secure_token_hex | Generate cryptographically secure hex tokens | secrets.token_hex() |
secure_random_int | Generate cryptographically secure integers | secrets.randbelow() |
🔧 Setup
Claude Desktop
Add this to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
📋 Tool Reference
random_int
Generate a random integer between low and high (inclusive).
Parameters:
low
(int): Lower bound (inclusive)high
(int): Upper bound (inclusive)
Example:
random_float
Generate a random float between low and high.
Parameters:
low
(float, optional): Lower bound (default: 0.0)high
(float, optional): Upper bound (default: 1.0)
Example:
random_choices
Choose k items from a population with replacement, optionally weighted.
Parameters:
population
(list): List of items to choose fromk
(int, optional): Number of items to choose (default: 1)weights
(list, optional): Weights for each item (default: equal weights)
Example:
random_shuffle
Return a new list with items in random order.
Parameters:
items
(list): List of items to shuffle
Example:
random_sample
Choose k unique items from population without replacement.
Parameters:
population
(list): List of items to choose fromk
(int): Number of items to choose
Example:
secure_token_hex
Generate a cryptographically secure random hex token.
Parameters:
nbytes
(int, optional): Number of random bytes (default: 32)
Example:
secure_random_int
Generate a cryptographically secure random integer below upper_bound.
Parameters:
upper_bound
(int): Upper bound (exclusive)
Example:
🔒 Security Considerations
This package provides both standard pseudorandom functions (suitable for simulations, games, etc.) and cryptographically secure functions (suitable for tokens, keys, etc.):
- Standard functions (
random_int
,random_float
,random_choices
,random_shuffle
): Use Python'srandom
module - fast but not cryptographically secure - Secure functions (
secure_token_hex
,secure_random_int
): Use Python'ssecrets
module - slower but cryptographically secure
🛠️ Development
Prerequisites
- Python 3.10+
- uv package manager
Setup
MCP Client Config
Note: Replace <path_to_your_repo>/random-number-mcp
with the absolute path to your cloned repository.
Building
Release Checklist
- Update Version:
- Increment the
version
number inpyproject.toml
andsrc/__init__.py
.
- Increment the
- Update Changelog:
- Add a new entry in
CHANGELOG.md
for the release.- Draft notes with coding agent using
git diff
context.
- Draft notes with coding agent using
- Commit along with any other pending changes.
- Add a new entry in
- Create GitHub Release:
- Draft a new release on the GitHub UI.
- Tag release using UI.
- The GitHub workflow will automatically build and publish the package to PyPI.
- Draft a new release on the GitHub UI.
Testing with MCP Inspector
For exploring and/or developing this server, use the MCP Inspector npm utility:
📝 License
MIT License - see LICENSE file for details.
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📚 Links
remote-capable server
The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.
Production-ready MCP server that provides LLMs with essential random generation abilities, including random integers, floats, choices, shuffling, and cryptographically secure tokens.
- 📺 Demo Video
- 🎲 Tools
- 🔧 Setup
- 📋 Tool Reference
- 🔒 Security Considerations
- 🛠️ Development
- Testing with MCP Inspector
- 📝 License
- 🤝 Contributing
- 📚 Links
Related Resources
Related MCP Servers
- PythonMIT License
- AsecurityAlicenseAqualityAn MCP server that provides LLMs access to other LLMsLast updated -41412JavaScriptMIT License
- -securityFlicense-qualityAn MCP server that implements a structured workflow for LLM-based coding, guiding development through feature clarification, documentation generation, phased implementation, and progress tracking.Last updated -8TypeScript
- AsecurityAlicenseAqualityAn MCP server that enables LLMs to interact with Moodle platforms to manage courses, students, assignments, and quizzes through natural language commands.Last updated -77JavaScriptMIT License